Predicting the phenotypic impact of genetic variants and treatments is crucial in cancer genetics and precision oncology. Here, we have developed a noise decorrelation method that enables quantitative phase imaging (QPI) with the capability for label-free noninvasive mapping of intracellular dry mass fluctuations within the millisecond-to-second timescale regime, previously inaccessible due to temporal phase noise. Applied to breast cancer cells, this method revealed regions driven by thermal forces and regions of intense activity fueled by ATP hydrolysis.
View Article and Find Full Text PDFObjective: Genome wide association studies have identified an exon 6 deletion variant that associates with increased risk of pancreatic cancer. To acquire evidence on its causal role, we developed a new mouse strain carrying an equivalent variant in , the mouse orthologue of .
Design: We used CRISPR/Cas9 to introduce a 707bp deletion in encompassing exon 6 ( ).
Mosaic variegated aneuploidy (MVA) is a rare condition in which abnormal chromosome counts (that is, aneuploidies), affecting different chromosomes in each cell (making it variegated) are found only in a certain number of cells (making it mosaic). MVA is characterized by various developmental defects and, despite its rarity, presents a unique clinical scenario to understand the consequences of chromosomal instability and copy number variation in humans. Research from patients with MVA, genetically engineered mouse models and functional cellular studies have found the genetic causes to be mutations in components of the spindle-assembly checkpoint as well as in related proteins involved in centrosome dynamics during mitosis.
View Article and Find Full Text PDFCell cycle progression is regulated by the orderly balance between kinase and phosphatase activities. PP2A phosphatase holoenzymes containing the B55 family of regulatory B subunits function as major CDK1-counteracting phosphatases during mitotic exit in mammals. However, the identification of the specific mitotic roles of these PP2A-B55 complexes has been hindered by the existence of multiple B55 isoforms.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) are characterized by the ability to self-renew and to replenish the hematopoietic system. The cell-cycle kinase cyclin-dependent kinase 6 (CDK6) regulates transcription, whereby it has both kinase-dependent and kinase-independent functions. Herein, we describe the complex role of CDK6, balancing quiescence, proliferation, self-renewal, and differentiation in activated HSCs.
View Article and Find Full Text PDFCell division requires a massive rewiring of cellular pathways, including molecular routes involved in providing energy for cell survival and functionality. The energetic requirements and the metabolic opportunities for generating energy change during the different phases of the cell cycle and how these processes are connected is still poorly understood. This chapter discusses basic concepts for a coordinated analysis of cell cycle progression and metabolism and provides specific protocols for studying these two connected processes in mammalian cells.
View Article and Find Full Text PDFUnabated activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is linked with the pathogenesis of various inflammatory disorders. Polo-like kinase 1 (PLK1) has been widely studied for its role in mitosis. Here, using both pharmacological and genetic approaches, we demonstrate that PLK1 promoted NLRP3 inflammasome activation at cell interphase.
View Article and Find Full Text PDFA hallmark of many malignant tumors is dedifferentiated (immature) cells bearing slight or no resemblance to the normal cells from which the cancer originated. Tumor dedifferentiated cells exhibit a higher capacity to survive to chemo and radiotherapies and have the ability to incite tumor relapse. Inducing cancer cell differentiation would abolish their self-renewal and invasive capacity and could be combined with the current standard of care, especially in poorly differentiated and aggressive tumors (with worst prognosis).
View Article and Find Full Text PDFCow's milk allergy can result in anaphylactic reactions. The estimated prevalence of cow's milk allergy in developed countries ranges from 0.5% to 3% at age 1 year.
View Article and Find Full Text PDFPancreatic acinar cells rely on PTF1 and other transcription factors to deploy their transcriptional program. We identify NFIC as a NR5A2 interactor and regulator of acinar differentiation. NFIC binding sites are enriched in NR5A2 ChIP-Sequencing peaks.
View Article and Find Full Text PDFProtein methylation is an important modification beyond epigenetics. However, systems analyses of protein methylation lag behind compared to other modifications. Recently, thermal stability analyses have been developed which provide a proxy of a protein functional status.
View Article and Find Full Text PDFBackground: Metastatic breast cancer (mBC) causes nearly all BC-related deaths. Next-generation sequencing (NGS) technologies allow for the application of personalized medicine using targeted therapies that could improve patients' outcomes. However, NGS is not routinely used in the clinical practice and its cost induces access-inequity among patients.
View Article and Find Full Text PDFTumor growth is influenced by a complex network of interactions between multiple cell types in the tumor microenvironment (TME). These constrained conditions trigger the endoplasmic reticulum (ER) stress response, which extensively reprograms mRNA translation. When uncontrolled over time, chronic ER stress impairs the antitumor effector function of CD8 T lymphocytes.
View Article and Find Full Text PDFCDK4/6 inhibitors benefit a minority of patients who receive them in the breast cancer adjuvant setting. p27Kip1 is a protein that inhibits CDK/Cyclin complexes. We hypothesized that single-nucleotide polymorphisms that impaired p27Kip1 function could render patients refractory to endocrine therapy but responsive to CDK4/6 inhibitors, narrowing the patient subpopulation that requires CDK4/6 inhibitors.
View Article and Find Full Text PDFMetastatic prostate cancer (PCa) inevitably acquires resistance to standard therapy preceding lethality. Here, we unveil a chromosomal instability (CIN) tolerance mechanism as a therapeutic vulnerability of therapy-refractory lethal PCa. Through genomic and transcriptomic analysis of patient datasets, we find that castration and chemotherapy-resistant tumors display the highest CIN and mitotic kinase levels.
View Article and Find Full Text PDFPrecision oncology research is challenging outside the contexts of oncogenic addiction and/or targeted therapies. We previously showed that phosphoproteomics is a powerful approach to reveal patient subsets of interest characterized by the activity of a few kinases where the underlying genomics is complex. Here, we conduct a phosphoproteomic screening of samples from HER2-negative female breast cancer receiving neoadjuvant paclitaxel (N = 130), aiming to find candidate biomarkers of paclitaxel sensitivity.
View Article and Find Full Text PDFThe AKT-mTOR pathway is a central regulator of cell growth and metabolism. Upon sustained mTOR activity, AKT activity is attenuated by a feedback loop that restrains upstream signaling. However, how cells control the signals that limit AKT activity is not fully understood.
View Article and Find Full Text PDFMaintenance of stemness is tightly linked to cell cycle regulation through protein phosphorylation by cyclin-dependent kinases (CDKs). However, how this process is reversed during differentiation is unknown. We report here that exit from stemness and differentiation of pluripotent cells along the neural lineage are controlled by CDC14, a CDK-counteracting phosphatase whose function in mammals remains obscure.
View Article and Find Full Text PDFGermline mutations leading to aneuploidy are rare, and their tumor-promoting properties are mostly unknown at the molecular level. We report here novel germline biallelic mutations in , encoding the spindle assembly checkpoint (SAC) protein MAD1, in a 36-year-old female with a dozen of neoplasias. Functional studies demonstrated lack of full-length protein and deficient SAC response, resulting in ~30 to 40% of aneuploid blood cells.
View Article and Find Full Text PDFPurpose: Most monotherapies available against glioblastoma multiforme (GBM) target individual hallmarks of this aggressive brain tumor with minimal success. In this article, we propose a therapeutic strategy using coenzyme Q (CoQ) as a pleiotropic factor that crosses the blood-brain barrier and accumulates in cell membranes acting as an antioxidant, and in mitochondrial membranes as a regulator of cell bioenergetics and gene expression.
Methods: Xenografts of U251 cells in nu/nu mice were used to assay tumor growth, hypoxia, angiogenesis, and inflammation.
Numerical chromosomal aberrations are highly frequent in cancer cells. However, tumor-associated mutations in regulators of the mitotic machinery that controls chromosome segregation are rather rare. By sequencing families with hereditary cancer, Chen and colleagues report two novel heterozygous mutations in CDC20, a coactivator of the anaphase-promoting complex (APC/C) and a target of the spindle assembly checkpoint (SAC) that prevents chromosome missegregation during mitosis.
View Article and Find Full Text PDFChromosome segregation requires that centromeres properly attach to spindle microtubules. This essential step regulates the accuracy of cell division and must therefore be precisely regulated. One of the main centromeric regulatory signaling pathways is the haspin-H3T3ph-chromosomal passenger complex (CPC) cascade, which is responsible for the recruitment of the CPC to the centromeres.
View Article and Find Full Text PDF