IEEE Trans Med Imaging
November 2024
Cardiac computed tomography (CT) has emerged as a major imaging modality for the diagnosis and monitoring of cardiovascular diseases. High temporal resolution is essential to ensure diagnostic accuracy. Limited-angle data acquisition can reduce scan time and improve temporal resolution, but typically leads to severe image degradation and motivates for improved reconstruction techniques.
View Article and Find Full Text PDFDeep learning (DL) has proven to be important for computed tomography (CT) image denoising. However, such models are usually trained under supervision, requiring paired data that may be difficult to obtain in practice. Diffusion models offer unsupervised means of solving a wide range of inverse problems via posterior sampling.
View Article and Find Full Text PDFPurpose: Photon counting CT (PCCT) provides spectral measurements for material decomposition. However, the image noise (at a fixed dose) depends on the source spectrum. Our study investigates the potential benefits from spectral optimization using fast kV switching and filtration to reduce noise in material decomposition.
View Article and Find Full Text PDFBackground Photon-counting CT (PCCT) represents a recent advancement in CT, offering improved spatial resolution and spectral separability. By using multiple adjustable energy bins, PCCT enables K-edge imaging, allowing mixed contrast agent distinction. Deep-silicon is a new type of photon-counting detector with different characteristics compared with cadmium photon-counting detectors.
View Article and Find Full Text PDFPhoton-counting detector CT (PCD-CT) is a new technology that has multiple diagnostic benefits including increased spatial resolution, iodine signal, and radiation dose efficiency, as well as multi-energy imaging capability, but which also has unique challenges in abdominal imaging. The purpose of this work is to summarize key features, technical parameters, and terms, which are common amongst current abdominopelvic PCD-CT systems and to propose standardized terminology (where none exists). In addition, user-selectable protocol parameters are highlighted to facilitate both scientific evaluation and early clinical adoption.
View Article and Find Full Text PDFBackground: Edge-on-irradiated silicon detectors are currently being investigated for use in full-body photon-counting computed tomography (CT) applications. The low atomic number of silicon leads to a significant number of incident photons being Compton scattered in the detector, depositing a part of their energy and potentially being counted multiple times. Even though the physics of Compton scatter is well established, the effects of Compton interactions in the detector on image quality for an edge-on-irradiated silicon detector have still not been thoroughly investigated.
View Article and Find Full Text PDFCardiac computed tomography (CT) is widely used for diagnosis of cardiovascular disease, the leading cause of morbidity and mortality in the world. Diagnostic performance depends strongly on the temporal resolution of the CT images. To image the beating heart, one can reduce the scanning time by acquiring limited-angle projections.
View Article and Find Full Text PDF. To enable practical interferometry-based phase contrast CT using standard incoherent x-ray sources, we propose an imaging system where the analyzer grating is replaced by a high-resolution detector. Since there is no need to perform multiple exposures (with the analyzer grating at different positions) at each scan angle, this scheme is compatible with continuous-rotation CT apparatus, and has the potential to reduce patient radiation dose and patient motion artifacts.
View Article and Find Full Text PDFBackground: In recent years, deep reinforcement learning (RL) has been applied to various medical tasks and produced encouraging results.
Objective: In this paper, we demonstrate the feasibility of deep RL for denoising simulated deep-silicon photon-counting CT (PCCT) data in both full and interior scan modes. PCCT offers higher spatial and spectral resolution than conventional CT, requiring advanced denoising methods to suppress noise increase.
Background And Purpose: Ultrasonographic optic nerve sheath (ONS) diameter is a noninvasive intracranial pressure (ICP) surrogate. ICP is monitored invasively in specialized intensive care units. Noninvasive ICP monitoring is important in less specialized settings.
View Article and Find Full Text PDFBackground: Recent improvements in CT detector technology have led to smaller detector pixels resolving frequencies beyond 20 lp/cm and enabled ultra-high-resolution CT. Silicon-based photon-counting detector (PCD) CT is one such technology that promises improved spatial and spectral resolution. However, when the detector pixel sizes are reduced, the impact of cardiac motion on CT images becomes more pronounced.
View Article and Find Full Text PDFThe metaverse integrates physical and virtual realities, enabling humans and their avatars to interact in an environment supported by technologies such as high-speed internet, virtual reality, augmented reality, mixed and extended reality, blockchain, digital twins and artificial intelligence (AI), all enriched by effectively unlimited data. The metaverse recently emerged as social media and entertainment platforms, but extension to healthcare could have a profound impact on clinical practice and human health. As a group of academic, industrial, clinical and regulatory researchers, we identify unique opportunities for metaverse approaches in the healthcare domain.
View Article and Find Full Text PDFBackground: All photon counting detectors have a characteristic count rate over which their performance degrades. Degradation in the clinical setting takes the form of increased noise, reduced material quantification accuracy, and image artifacts. Count rate is a function of patient attenuation, beam filtration, scanner geometry, and X-ray technique.
View Article and Find Full Text PDFCardiac CT provides critical information for the evaluation of cardiovascular diseases. However, involuntary patient motion and physiological movement of the organs during CT scanning cause motion blur in the reconstructed CT images, degrading both cardiac CT image quality and its diagnostic value. In this paper, we propose and demonstrate an effective and efficient method for CT coronary angiography image quality grading via semi-automatic labeling and vessel tracking.
View Article and Find Full Text PDFObjectives: Because radiotherapy is indispensible for treating cervical cancer, it is critical to accurately and efficiently delineate the radiation targets. We evaluated a deep learning (DL)-based auto-segmentation algorithm for automatic contouring of clinical target volumes (CTVs) in cervical cancers.
Methods: Computed tomography (CT) datasets from 535 cervical cancers treated with definitive or postoperative radiotherapy were collected.
A quantum mechanical formulation of de Sitter cosmological spacetimes still eludes string theory. In this Letter we conjecture a potentially rigorous framework in which the status of de Sitter space is the same as that of a resonance in a scattering process. We conjecture that transition amplitudes between certain states with asymptotically supersymmetric flat vacua contain resonant pole characteristic metastable intermediate states.
View Article and Find Full Text PDFThe integrity of endothelial function in major arteries (EFMA) is a powerful independent predictor of heart attack and stroke. Existing ultrasound-based non-invasive assessment methods are technically challenging and suitable only for laboratory settings. EFMA, like blood pressure (BP), is both acutely and chronically affected by factors such as lifestyle and medication.
View Article and Find Full Text PDFPurpose: To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of translucent Gd(2)O(2)S ceramic scintillator. Clinical MVCBCT images are traditionally acquired with the same 6 MV treatment beam line (TBL) that is used for cancer treatment, a standard amorphous Si (a-Si) flat panel imager, and the Kodak Lanex Fast-B (LFB) scintillator.
View Article and Find Full Text PDFThe very nature of nuclear medicine, the visual representation of injected radiopharmaceuticals, implies imaging of dynamic processes such as the uptake and wash-out of radiotracers from body organs. For years, nuclear medicine has been touted as the modality of choice for evaluating function in health and disease. This evaluation is greatly enhanced using single photon emission computed tomography (SPECT), which permits three-dimensional (3D) visualization of tracer distributions in the body.
View Article and Find Full Text PDFPurpose: In current image guided pretreatment patient position adjustment methods, image registration is used to determine alignment parameters. Since most positioning hardware lacks the full six degrees of freedom (DOF), accuracy is compromised. The authors show that such compromises are often unnecessary when one models the planned treatment beams as part of the adjustment calculation process.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
January 2010
Tomosynthesis imaging requires projection images from different viewing angles. Conventional systems use a moving xray source to acquire the individual projections. Using a stationary distributed x-ray source with a number of sources that equals the number of required projections, this can be achieved without any mechanical motion.
View Article and Find Full Text PDFThe authors present the design and simulation of an imaging system that employs a compact multiple source x-ray tube to produce a tomosynthesis image from a set of projections obtained at a single tube position. The electron sources within the tube are realized using cold cathode carbon nanotube technology. The primary intended application is tomosynthesis-based 3D image guidance during external beam radiation therapy.
View Article and Find Full Text PDFQuantitative reconstruction of cone beam X-ray computed tomography (CT) datasets requires accurate modeling of scatter, beam-hardening, beam profile, and detector response. Typically, commercial imaging systems use fast empirical corrections that are designed to reduce visible artifacts due to incomplete modeling of the image formation process. In contrast, Monte Carlo (MC) methods are much more accurate but are relatively slow.
View Article and Find Full Text PDFThe accurate delivery of external beam radiation therapy is often facilitated through the implantation of radio-opaque fiducial markers (gold seeds). Before the delivery of each treatment fraction, seed positions can be determined via low dose volumetric imaging. By registering these seed locations with the corresponding locations in the previously acquired treatment planning computed tomographic (CT) scan, it is possible to adjust the patient position so that seed displacement is accommodated.
View Article and Find Full Text PDFWe describe a focused beam-stop array (BSA) for the measurement of object scatter in imaging systems that utilize x-ray beams in the megavoltage (MV) energy range. The BSA consists of 64 doubly truncated tungsten cone elements of 0.5 cm maximum diameter that are arranged in a regular array on an acrylic slab.
View Article and Find Full Text PDF