Cyclic dinucleotides (CDNs) are a significant and expanding class of secondary messengers that influence several vital bacterial physiological functions. Therefore, an understanding of the process by which CDNs are degraded by their cognate PDEs is crucial for comprehending a variety of cellular processes, such as the formation and dissemination of biofilms. As an alternative, it might be beneficial to create and/or identify non-hydrolyzable CDN derivatives to employ them as chemical probes of cyclic-di-GMP (c-di-GMP) signaling.
View Article and Find Full Text PDFCyclic dinucleotides (CDNs) have emerged as the central molecules that aid bacteria to adapt and thrive in changing environmental conditions. Therefore, tight regulation of intracellular CDN concentration by counteracting the action of dinucleotide cyclases and phosphodiesterases (PDEs) is critical. Here, we demonstrate that a putative stand-alone EAL domain PDE from Vibrio cholerae (VcEAL) is capable to degrade both the second messenger c-di-GMP and hybrid 3'3'-cyclic GMP-AMP (cGAMP).
View Article and Find Full Text PDFRho-dependent transcription termination is a well-conserved process in bacteria. The Psu and YaeO proteins are the two established inhibitors of the ATP-dependent RNA helicase Rho protein of Escherichia coli. Here, we show a detailed sequence and phylogenetic analysis demonstrating that Vibrio cholerae YaeO (VcYaeO) is significantly distinct from its E.
View Article and Find Full Text PDF