Cancer clone evolution takes place within tissue ecosystem habitats. But, how exactly tumors arise from a few malignant cells within an intact epithelium is a central, yet unanswered question. This is mainly due to the inaccessibility of this process to longitudinal imaging together with a lack of systems that model the progression of a fraction of transformed cells within a tissue.
View Article and Find Full Text PDFHow tissues migrate robustly through changing guidance landscapes is poorly understood. Here, quantitative imaging is combined with inducible perturbation experiments to investigate the mechanisms that ensure robust tissue migration in vivo. We show that tissues exposed to acute "chemokine floods" halt transiently before they perfectly adapt, i.
View Article and Find Full Text PDFEssential biological functions, such as mitosis, require tight coordination of hundreds of proteins in space and time. Localization, the timing of interactions and changes in cellular structure are all crucial to ensure the correct assembly, function and regulation of protein complexes. Imaging of live cells can reveal protein distributions and dynamics but experimental and theoretical challenges have prevented the collection of quantitative data, which are necessary for the formulation of a model of mitosis that comprehensively integrates information and enables the analysis of the dynamic interactions between the molecular parts of the mitotic machinery within changing cellular boundaries.
View Article and Find Full Text PDFThe ability to tag a protein at its endogenous locus with a fluorescent protein (FP) enables quantitative understanding of protein dynamics at the physiological level. Genome-editing technology has now made this powerful approach routinely applicable to mammalian cells and many other model systems, thereby opening up the possibility to systematically and quantitatively map the cellular proteome in four dimensions. 3D time-lapse confocal microscopy (4D imaging) is an essential tool for investigating spatial and temporal protein dynamics; however, it lacks the required quantitative power to make the kind of absolute and comparable measurements required for systems analysis.
View Article and Find Full Text PDFEpigenetics Chromatin
December 2016
Background: Genome organization into subchromosomal topologically associating domains (TADs) is linked to cell-type-specific gene expression programs. However, dynamic properties of such domains remain elusive, and it is unclear how domain plasticity modulates genomic accessibility for soluble factors.
Results: Here, we combine and compare a high-resolution topology analysis of interacting chromatin loci with fluorescence correlation spectroscopy measurements of domain dynamics in single living cells.
In Drosophila, two Piwi proteins, Aubergine (Aub) and Argonaute-3 (Ago3), localize to perinuclear "nuage" granules and use guide piRNAs to target and destroy transposable element transcripts. We find that Aub and Ago3 are recruited to nuage by two different mechanisms. Aub requires a piRNA guide for nuage recruitment, indicating that its localization depends on recognition of RNA targets.
View Article and Find Full Text PDFTo understand the function of cellular protein networks, spatial and temporal context is essential. Fluorescence correlation spectroscopy (FCS) is a single-molecule method to study the abundance, mobility and interactions of fluorescence-labeled biomolecules in living cells. However, manual acquisition and analysis procedures have restricted live-cell FCS to short-term experiments of a few proteins.
View Article and Find Full Text PDFClathrin-mediated endocytosis is a highly conserved intracellular trafficking pathway that depends on dynamic protein-protein interactions between up to 60 different proteins. However, little is known about the spatio-temporal regulation of these interactions. Using fluorescence (cross)-correlation spectroscopy in yeast, we tested 41 previously reported interactions in vivo and found 16 to exist in the cytoplasm.
View Article and Find Full Text PDFFluorescence tagging of proteins is a widely used tool to study protein function and dynamics in live cells. However, the extent to which different mammalian transgene methods faithfully report on the properties of endogenous proteins has not been studied comparatively. Here we use quantitative live-cell imaging and single-molecule spectroscopy to analyze how different transgene systems affect imaging of the functional properties of the mitotic kinase Aurora B.
View Article and Find Full Text PDFIn living cells, most proteins diffuse over distances of micrometres within seconds. Protein translocation is constrained due to the cellular organization into subcompartments that impose diffusion barriers and guide enzymatic activities to their targets. Here, we introduce an approach to retrieve structural features from the scale-dependent mobility of green fluorescent protein monomer and multimers in human cells.
View Article and Find Full Text PDFSAS-6 proteins are thought to impart the ninefold symmetry of centrioles, but the mechanisms by which their assembly occurs within cells remain elusive. In this paper, we provide evidence that the N-terminal, coiled-coil, and C-terminal domains of HsSAS-6 are each required for procentriole formation in human cells. Moreover, the coiled coil is necessary and sufficient to mediate HsSAS-6 centrosomal targeting.
View Article and Find Full Text PDFIntracellular molecular transport and localization are crucial for cells (plant cells as much as mammalian cells) to proliferate and to adapt to diverse environmental conditions. Here, some aspects of the microscopy-based method of fluorescence recovery after photobleaching (FRAP) are introduced. In the course of the last years, this has become a very powerful tool to study dynamic processes in living cells and tissue, and it is expected to experience further increasing demand because quantitative information on biological systems becomes more and more important.
View Article and Find Full Text PDFTo quantify more precisely and more reliably diffusion and reaction properties of biomolecules in living cells, a novel closed description in 3D of both the bleach and the post-bleach segment of fluorescence recovery after photobleaching (FRAP) data acquired at a point, i.e., a diffraction-limited observation area, termed point FRAP, is presented.
View Article and Find Full Text PDFDynamic actin filaments are a crucial component of clathrin-mediated endocytosis when endocytic proteins cannot supply enough energy for vesicle budding. Actin cytoskeleton is thought to provide force for membrane invagination or vesicle scission, but how this force is transmitted to the plasma membrane is not understood. Here we describe the molecular mechanism of plasma membrane-actin cytoskeleton coupling mediated by cooperative action of epsin Ent1 and the HIP1R homolog Sla2 in yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFThe functional state of a cell is largely determined by the spatiotemporal organization of its proteome. Technologies exist for measuring particular aspects of protein turnover and localization, but comprehensive analysis of protein dynamics across different scales is possible only by combining several methods. Here we describe tandem fluorescent protein timers (tFTs), fusions of two single-color fluorescent proteins that mature with different kinetics, which we use to analyze protein turnover and mobility in living cells.
View Article and Find Full Text PDFDiffusion processes and local dynamic equilibria inside cells lead to nonuniform spatial distributions of molecules, which are essential for processes such as nuclear organization and signaling in cell division, differentiation and migration. To understand these mechanisms, spatially resolved quantitative measurements of protein abundance, mobilities and interactions are needed, but current methods have limited capabilities to study dynamic parameters. Here we describe a microscope based on light-sheet illumination that allows massively parallel fluorescence correlation spectroscopy (FCS) measurements and use it to visualize the diffusion and interactions of proteins in mammalian cells and in isolated fly tissue.
View Article and Find Full Text PDFWe introduce a fast spectral imaging system using an electron-multiplying charge-coupled device (EM-CCD) as a detector. Our system is combined with a custom-built two-photon excitation laser scanning microscope and has 80 detection channels, which allow for high spectral resolution and fast frame acquisition without any loss of spectral information. To demonstrate the efficiency of our approach, we applied this technology to monitor fluorescent proteins and quantum dot-labeled G protein-coupled receptors in living cells as well as autofluorescence in tissue samples.
View Article and Find Full Text PDFWe present an implementation of fluorescence correlation spectroscopy with spectrally resolved detection based on a combined commercial confocal laser scanning/fluorescence correlation spectroscopy microscope. We have replaced the conventional detection scheme by a prism-based spectrometer and an electron-multiplying charge-coupled device camera used to record the photons. This allows us to read out more than 80,000 full spectra per second with a signal-to-noise ratio and a quantum efficiency high enough to allow single photon counting.
View Article and Find Full Text PDFThe intracellular mobility of biomolecules is determined by transport and diffusion as well as molecular interactions and is crucial for many processes in living cells. Methods of fluorescence microscopy like confocal laser scanning microscopy (CLSM) can be used to characterize the intracellular distribution of fluorescently labeled biomolecules. Fluorescence correlation spectroscopy (FCS) is used to describe diffusion, transport and photo-physical processes quantitatively.
View Article and Find Full Text PDFThe genome of eukaryotes is organized into a dynamic nucleoprotein complex referred to as chromatin, which can adopt different functional states. Both the DNA and the protein component of chromatin are subject to various post-translational modifications that define the cell's gene expression program. Their readout and establishment occurs in a spatio-temporally coordinated manner that is controlled by numerous chromatin-interacting proteins.
View Article and Find Full Text PDFHeterochromatin protein 1 (HP1) is a central factor in establishing and maintaining the repressive heterochromatin state. To elucidate its mobility and interactions, we conducted a comprehensive analysis on different time and length scales by fluorescence fluctuation microscopy in mouse cell lines. The local mobility of HP1alpha and HP1beta was investigated in densely packed pericentric heterochromatin foci and compared with other bona fide euchromatin regions of the nucleus by fluorescence bleaching and correlation methods.
View Article and Find Full Text PDFThe spatial and temporal fluctuation microscope (STFM) presented here extends the concept of a fluorescence confocal laser scanning microscope to illumination and detection along a line. The parallel multichannel acquisition of the fluorescence signal was accomplished by using a single line of an electron-multiplying charge-coupled device camera at 14 mus time resolution for detection of the fluorescence signal. The STFM system provided fast confocal imaging (30 images per second) and allowed for the spatially resolved detection of particle concentration fluctuations in fluorescence correlation spectroscopy experiments.
View Article and Find Full Text PDFThe exon-exon junction complex (EJC) forms via association of proteins during splicing of mRNA in a defined manner. Its organization provides a link between biogenesis, nuclear export, and translation of the transcripts. The EJC proteins accumulate in nuclear speckles alongside most other splicing-related factors.
View Article and Find Full Text PDF