Catalytic enantioselective methods are introduced that allow access to a variety of allyl boronates and silanes that contain a difluoroalkene unit; the resulting products may be used for the preparation of organofluorine compounds in high enantiomeric purity. Furthermore, a number of key mechanistic aspects of the transformations have been investigated and analyzed. Thus, first, an NHC-Cu-catalyzed method for boryl substitution with FC-substituted alkenes is introduced.
View Article and Find Full Text PDFThe first catalytic method for diastereo- and enantioselective synthesis of allylic boronates bearing a Z-trisubstituted alkenyl fluoride is disclosed. Boryl substitution is performed with either a Z- or E-allyldifluoride and is catalyzed by bisphosphine/Cu complexes, affording products in up to 99 % yield with >98:2 Z/E selectivity and 99:1 enantiomeric ratio. A variety of subsequent modifications are feasible, and notable examples are diastereoselective additions to aldehydes/aldimines to access homoallylic alcohols/amines containing a fluorosubstituted stereogenic quaternary center.
View Article and Find Full Text PDFA practical, efficient and broadly applicable catalytic method for synthesis of easily differentiable vicinal diboronate compounds is presented. Reactions are promoted by a combination of PCy or PPh, CuCl and LiO-Bu and may be performed with readily accessible alkenyl boronate substrates. Through the use of an alkenyl-B(pin) (pin = pinacolato) or alkenyl- B(dan) (dan = naphthalene-1,8-diaminato) starting material and commercially available (pin)B- B(dan) or B(pin) as the reagent, a range of vicinal diboronates, including those that contain a B-substituted quaternary carbon center, may be prepared in up to 91% yield and with >98% site selectivity.
View Article and Find Full Text PDFA broadly applicable, practical, scalable, efficient and highly α- and enantioselective method for addition of a silyl-protected propargyl moiety to trifluoromethyl ketones has been developed. Reactions, promoted by 2.0 mol % of a catalyst that is derived in situ from a readily accessible aminophenol compound at ambient temperature, were complete after only 15 minutes at room temperature.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2016
Readily accessible and easy-to-handle Ru complexes capable of generating all-Z polynorbornene and polynorbornadiene by ring-opening metathesis polymerization (ROMP) with controllable selectivity, ranging from ≈50 to ≥95% syndiotactic, are introduced. It is demonstrated that the rate of non-metathesis based polytopal isomerization and levels of syndiotacticity may be fine-tuned by the adjustment of monomer concentration and catalyst's steric and electronic characteristics.
View Article and Find Full Text PDFOlefin metathesis catalysts provide access to molecules that are indispensable to physicians and researchers in the life sciences. A persisting problem, however, is the dearth of chemical transformations that directly generate acyclic Z allylic alcohols, including products that contain a hindered neighbouring substituent or reactive functional units such as a phenol, an aldehyde, or a carboxylic acid. Here we present an electronically modified ruthenium-disulfide catalyst that is effective in generating such high-value compounds by cross-metathesis.
View Article and Find Full Text PDF