Publications by authors named "Malte Roerden"

Background: Intratumoral heterogeneity (ITH) and subclonal antigen expression blunt antitumor immunity and are associated with poor responses to immune-checkpoint blockade immunotherapy (ICB) in patients with cancer. The underlying mechanisms however thus far remained elusive, preventing the design of novel treatment approaches for patients with high ITH tumors.

Methods: We developed a mouse model of lung adenocarcinoma with defined expression of different neoantigens (NeoAg), enabling us to analyze how these impact antitumor T-cell immunity and to study underlying mechanisms.

View Article and Find Full Text PDF

Vaccines and immunotherapies that target peptide-major histocompatibility complexes (peptide-MHCs) have the potential to address multiple unmet medical needs in cancer and infectious disease. Designing vaccines and immunotherapies to target peptide-MHCs requires accurate identification of target peptides in infected or cancerous cells or tissue, and may require absolute or relative quantification to identify abundant targets and measure changes in presentation under different treatment conditions. Internal standard parallel reaction monitoring (also known as 'SureQuant') can be used to validate and/or quantify MHC peptides previously identified by using untargeted methods such as data-dependent acquisition.

View Article and Find Full Text PDF

Immunotherapies targeting cancer-specific neoantigens have revolutionized the treatment of cancer patients. Recent evidence suggests that epigenetic therapies synergize with immunotherapies, mediated by the de-repression of endogenous retroviral element (ERV)-encoded promoters, and the initiation of transcription. Here, we use deep RNA sequencing from cancer cell lines treated with DNA methyltransferase inhibitor (DNMTi) and/or Histone deacetylase inhibitor (HDACi), to assemble a de novo transcriptome and identify several thousand ERV-derived, treatment-induced novel polyadenylated transcripts (TINPATs).

View Article and Find Full Text PDF
Article Synopsis
  • Therapy-resistant leukemia stem and progenitor cells (LSC) are a key factor in the relapse of acute myeloid leukemia (AML), highlighting the need for new treatments targeting these cells.
  • The study identifies specific HLA-presented antigens on LSCs that can trigger T-cell responses, suggesting a potential for immune surveillance against AML.
  • By discovering and validating these LSC-associated antigens, the research supports the development of T cell-based therapies to target and eliminate residual LSCs in AML patients, improving their treatment outcomes.
View Article and Find Full Text PDF

Cancer immunotherapies, in particular checkpoint blockade immunotherapy (CBT), can induce control of cancer growth, with a fraction of patients experiencing durable responses. However, the majority of patients currently do not respond to CBT and the molecular determinants of resistance have not been fully elucidated. Mounting clinical evidence suggests that the clonal status of neoantigens (NeoAg) impacts the anti-tumor T cell response.

View Article and Find Full Text PDF

HLA-presented antigenic peptides are central components of T cell-based immunity in infectious disease. Beside HLA molecules on cell surfaces, soluble HLA molecules (sHLA) are released in the blood suggested to impact cellular immune responses. We demonstrated that sHLA levels were significantly increased in COVID-19 patients and convalescent individuals compared to a control cohort and positively correlated with SARS-CoV-2-directed cellular immunity.

View Article and Find Full Text PDF

T cell immunity is central for the control of viral infections. CoVac-1 is a peptide-based vaccine candidate, composed of SARS-CoV-2 T cell epitopes derived from various viral proteins, combined with the Toll-like receptor 1/2 agonist XS15 emulsified in Montanide ISA51 VG, aiming to induce profound SARS-CoV-2 T cell immunity to combat COVID-19. Here we conducted a phase I open-label trial, recruiting 36 participants aged 18-80 years, who received a single subcutaneous CoVac-1 vaccination.

View Article and Find Full Text PDF

Antigen-specific immunotherapies, in particular peptide vaccines, depend on the recognition of naturally presented antigens derived from mutated and unmutated gene products on human leukocyte antigens, and represent a promising low-side-effect concept for cancer treatment. So far, the broad application of peptide vaccines in cancer patients is hampered by challenges of time- and cost-intensive personalized vaccine design, and the lack of neoepitopes from tumor-specific mutations, especially in low-mutational burden malignancies. In this study, we developed an immunopeptidome-guided workflow for the design of tumor-associated off-the-shelf peptide warehouses for broadly applicable personalized therapeutics.

View Article and Find Full Text PDF

Novel predictive factors are needed to identify mantle cell lymphoma (MCL) patients at increased risk for relapse after high-dose chemotherapy and autologous hematopoietic stem cell transplantation (HDCT/Auto-HSCT). Although bone marrow and peripheral blood involvement is commonly observed in MCL and lymphoma cell contamination of autologous stem cell grafts might facilitate relapse after Auto-HSCT, prevalence and prognostic significance of residual MCL cells in autologous grafts are unknown. We therefore performed a multiparameter flow cytometry (MFC)-based measurable residual disease (MRD) assessment in autologous stem cell grafts and analyzed its association with clinical outcome in an unselected retrospective cohort of 36 MCL patients.

View Article and Find Full Text PDF

Patients with cancer, in particular patients with hematologic malignancies, are at increased risk for critical illness upon COVID-19. We here assessed antibody as well as CD4 and CD8 T-cell responses in unexposed and SARS-CoV-2-infected patients with cancer to characterize SARS-CoV-2 immunity and to identify immunologic parameters contributing to COVID-19 outcome. Unexposed patients with hematologic malignancies presented with reduced prevalence of preexisting SARS-CoV-2 cross-reactive CD4 T-cell responses and signs of T-cell exhaustion compared with patients with solid tumors and healthy volunteers.

View Article and Find Full Text PDF

Long-term immunological memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for the development of population-level immunity, which is the aim of vaccination approaches. Reports on rapidly decreasing antibody titers have led to questions regarding the efficacy of humoral immunity alone. The relevance of T cell memory after coronavirus disease 2019 (COVID-19) remains unclear.

View Article and Find Full Text PDF

Low human leukocyte antigen (HLA)-DR expression might compromise CD4 T-cell-mediated anti-tumor immunity. Its immunological and clinical significance however remain undefined in non-promyelocytic acute myeloid leukemia (AML). Taking advantage of mass spectrometry-based immunopeptidome analysis of primary AML samples ( = 31), we studied the implications of low HLA-DR expression for antigen presentation and analyzed its association with disease characteristics and survival within a cohort of 399 AML patients.

View Article and Find Full Text PDF

Background: Severe and disseminated non-tuberculous mycobacterial (NTM) infections are frequently linked to a genetic predisposition but acquired defects of the interferon gamma (IFNγ) / interleukin 12 (IL-12) pathway need to be considered in adult patients with persistent or recurrent infections. Neutralizing anti-IFNγ autoantibodies disrupting IFNγ signalling have been identified as the cause of a severe and unique acquired immunodeficiency syndrome with increased susceptibility to NTM and other intracellular pathogens.

Case Presentation: An adult Asian female with a previous history of recurrent NTM infections presented with persistent diarrhea, abdominal pain, night sweats and weight loss.

View Article and Find Full Text PDF

T cell immunity is central for the control of viral infections. To characterize T cell immunity, but also for the development of vaccines, identification of exact viral T cell epitopes is fundamental. Here we identify and characterize multiple dominant and subdominant SARS-CoV-2 HLA class I and HLA-DR peptides as potential T cell epitopes in COVID-19 convalescent and unexposed individuals.

View Article and Find Full Text PDF

The diversity of human leukocyte antigens (HLAs) enables the presentation of immense repertoires of peptides, including tumor-associated antigens (TAAs). As a surrogate for immunopeptidome diversity, the HLA evolutionary divergence (HED) between individual HLA alleles might directly define the ability to present TAAs, a prerequisite for graft-versus-leukemia effects. We therefore analyzed the impact of HED on survival within a cohort of 171 acute myeloid leukemia (AML) patients after matched donor allogeneic hematopoietic stem cell transplantation (HSCT).

View Article and Find Full Text PDF

The B-cell maturation antigen (BCMA) is currently being evaluated as promising tumor-associated surface antigen for T-cell-based immunotherapy approaches, such as CAR T cells and bispecific antibodies, in multiple myeloma (MM). Cytotoxic T cells bearing BCMA-specific T-cell receptors might further allow targeting HLA-presented antigens derived from the intracellular domain of BCMA. By analyzing a mass spectrometry-acquired immunopeptidome dataset of primary MM samples and MM cell lines for BCMA-derived HLA ligands, we identified the naturally presented HLA-B*18-restricted ligand P(BCMA).

View Article and Find Full Text PDF

Genetic and morphological markers are well-established prognostic factors in acute myeloid leukemia (AML). However, further reliable markers are urgently needed to improve risk stratification in AML. CD318 (CDCP1) is a transmembrane protein which in solid tumors promotes formation of metastasis and correlates with poor survival.

View Article and Find Full Text PDF

Neoantigens derive from non-synonymous somatic mutations in malignant cells. Recognition of neoantigens presented via human leukocyte antigen (HLA) molecules on the tumor cell surface by T cells holds promise to enable highly specific and effective anti-cancer immune responses and thus neoantigens provide an exceptionally attractive target for immunotherapy. While genome sequencing approaches already enable the reliable identification of somatic mutations in tumor samples, the identification of mutation-derived, naturally HLA-presented neoepitopes as targets for immunotherapy remains challenging, particularly in low mutational burden cancer entities, including hematological malignancies.

View Article and Find Full Text PDF

Autologous stem cell transplantation (autoSCT) can achieve long-term remission in primary refractory or relapsed Hodgkin lymphoma (r/r HL); however, still up to 50% of patients relapse after autoSCT. In this retrospective analysis, we investigated the impact of autologous stem cell transplantation in a consecutive, unselected cohort of primary refractory and relapsed Hodgkin lymphoma patients (n = 66) with the majority of patients treated in the pre-brentuximab vedotin and immune checkpoint inhibitor era. In our cohort, a 5-year overall survival (OS) from autoSCT of 59.

View Article and Find Full Text PDF

While several genetic and morphological markers are established and serve to guide therapy of acute myeloid leukaemia (AML), there is still profound need to identify additional markers to better stratify patients. CD105 (Endoglin) is a type I transmembrane protein reported to induce activation and proliferation of endothelial cells. In addition, CD105 is expressed in haematological malignancies and the vessels of solid tumours.

View Article and Find Full Text PDF

Purpose: Peripheral T cell lymphomas (PTCL) are a rare and heterogeneous group of aggressive non-Hodgkin lymphomas, showing a generally poor prognosis. In this retrospective analysis, we aimed to investigate the impact of autologous stem cell transplantation (autoSCT) in PTCL.

Methods: A retrospective analysis of 58 consecutive unselected PTCL patients aged 21-71 years undergoing autoSCT as first-line consolidation as well as in the relapse setting was performed.

View Article and Find Full Text PDF

Antileukemia immunity plays an important role in disease control and maintenance of tyrosine kinase inhibitor (TKI)-free remission in chronic myeloid leukemia (CML). Thus, antigen-specific immunotherapy holds promise for strengthening immune control in CML but requires the identification of CML-associated targets. In this study, we used a mass spectrometry-based approach to identify naturally presented HLA class I- and class II-restricted peptides in primary CML samples.

View Article and Find Full Text PDF

OX40 and its ligand are members of the TNF/TNF receptor superfamily, which includes various molecules influencing cellular signaling and function of both tumor and immune cells. The ability of OX40 to promote proliferation and differentiation of activated T cells fueled present attempts to modulate this immune checkpoint to reinforce antitumor immunity. While we recently found evidence for the involvement of OX40 in pathophysiology of acute myeloid leukemia including natural killer (NK) cell immunosurveillance, less is known on its role in acute lymphoblastic leukemia (ALL).

View Article and Find Full Text PDF

The TNF receptor family member OX40 promotes activation and proliferation of T cells, which fuels efforts to modulate this immune checkpoint to reinforce antitumor immunity. Besides T cells, NK cells are a second cytotoxic lymphocyte subset that contributes to antitumor immunity, particularly in leukemia. Accordingly, these cells are being clinically evaluated for cancer treatment through multiple approaches, such as adoptive transfer of expanded polyclonal NK cells (pNKC).

View Article and Find Full Text PDF

Renal proximal tubular cells constantly recycle nutrients to ensure minimal loss of vital substrates into the urine. Although most of the transport mechanisms have been discovered at the molecular level, little is known about the factors regulating these processes. Here, we show that mTORC1 and mTORC2 specifically and synergistically regulate PTC endocytosis and transport processes.

View Article and Find Full Text PDF