Changing precipitation has the potential to alter nitrous oxide (N O) emissions from agricultural regions. In this study, we applied the Coupled Model Intercomparison Project Phase 5 end-of-century RCP 8.5 (business as usual) precipitation projections for the U.
View Article and Find Full Text PDFTerrestrial ecosystems are simultaneously the largest source and a major sink of volatile organic compounds (VOCs) to the global atmosphere, and these two-way fluxes are an important source of uncertainty in current models. Here, we apply high-resolution mass spectrometry (proton transfer reaction-quadrupole interface time-of-flight; PTR-QiTOF) to measure ecosystem-atmosphere VOC fluxes across the entire detected mass range 0-335) over a mixed temperate forest and use the results to test how well a state-of-science chemical transport model (GEOS-Chem CTM) is able to represent the observed reactive carbon exchange. We show that ambient humidity fluctuations can give rise to spurious VOC fluxes with PTR-based techniques and present a method to screen for such effects.
View Article and Find Full Text PDF