The El Niño-Southern Oscillation (ENSO) provides most of the global seasonal climate forecast skill, yet, quantifying the sources of skilful predictions is a long-standing challenge. Different sources of predictability affect ENSO evolution, leading to distinct global effects. Artificial intelligence forecasts offer promising advancements but linking their skill to specific physical processes is not yet possible, limiting our understanding of the dynamics underpinning the advancements.
View Article and Find Full Text PDFChanges in the sea surface temperature (SST) pattern in the tropical Pacific modulate radiative feedbacks to greenhouse gas forcing, the pace of global warming and regional climate impacts. Therefore, elucidating the drivers of the pattern is critically important for reducing uncertainties in future projections. However, the causes of observed changes over recent decades, an enhancement of the zonal SST contrast coupled with a strengthening of the Walker circulation, are still debated.
View Article and Find Full Text PDFThe observed rate of global warming since the 1970s has been proposed as a strong constraint on equilibrium climate sensitivity (ECS) and transient climate response (TCR)-key metrics of the global climate response to greenhouse-gas forcing. Using CMIP5/6 models, we show that the inter-model relationship between warming and these climate sensitivity metrics (the basis for the constraint) arises from a similarity in transient and equilibrium warming patterns within the models, producing an effective climate sensitivity (EffCS) governing recent warming that is comparable to the value of ECS governing long-term warming under CO[Formula: see text] forcing. However, CMIP5/6 historical simulations do not reproduce observed warming patterns.
View Article and Find Full Text PDFAccording to twenty-first century climate-model projections, greenhouse warming will intensify rainfall variability and extremes across the globe. However, verifying this prediction using observations has remained a substantial challenge owing to large natural rainfall fluctuations at regional scales. Here we show that deep learning successfully detects the emerging climate-change signals in daily precipitation fields during the observed record.
View Article and Find Full Text PDFEl Niño-Southern Oscillation (ENSO) is the strongest interannual climate variability with far-reaching socioeconomic consequences. Many studies have investigated ENSO-projected changes under future greenhouse warming, but its responses to plausible mitigation behaviors remain unknown. We show that ENSO sea surface temperature (SST) variability and associated global teleconnection patterns exhibit strong hysteretic responses to carbon dioxide (CO) reduction based on the 28-member ensemble simulations of the CESM1.
View Article and Find Full Text PDFThe El Niño Southern Oscillation (ENSO) is a climate mode in the tropical Pacific. The ENSO teleconnections are known to affect Arctic temperature; however, the robustness of this relationship remains debated. We find that Arctic surface temperatures during three major El Niño events are remarkably well simulated by a state-of-the-art model when nudged to the observed pantropical sea surface temperatures (SSTs).
View Article and Find Full Text PDFThe El Niño-Southern Oscillation (ENSO), the primary driver of year-to-year global climate variability, is known to influence the North Tropical Atlantic (NTA) sea surface temperature (SST), especially during boreal spring season. Focusing on statistical lead-lag relationships, previous studies have proposed that interannual NTA SST variability can also feed back on ENSO in a predictable manner. However, these studies did not properly account for ENSO's autocorrelation and the fact that the SST in the Atlantic and Pacific, as well as their interaction are seasonally modulated.
View Article and Find Full Text PDFMechanisms by which tropical Pacific and Indian Ocean sea surface temperatures (SST) influence vegetation in eastern Africa have not been fully explored. Here, we use a suite of idealized Earth system model simulations to elucidate the governing processes for eastern African interannual vegetation changes. Our analysis focuses on Tanzania.
View Article and Find Full Text PDFTropical cyclones (TCs) are extreme storms that form over warm tropical oceans. Along their tracks, TCs mix up cold water, which can further affect their intensity. Because of the adoption of lower-resolution ocean models, previous modeling studies on the TC response to greenhouse warming underestimated such oceanic feedbacks.
View Article and Find Full Text PDFWalker circulation variability and associated zonal shifts in the heating of the tropical atmosphere have far-reaching global impacts well into high latitudes. Yet the reversed high latitude-to-Walker circulation teleconnection is not fully understood. Here, we reveal the dynamical pathways of this teleconnection across different components of the climate system using a hierarchy of climate model simulations.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe El Niño-Southern Oscillation (ENSO) results from the instability of and also modulates the strength of the tropical-Pacific cold tongue. While climate models reproduce observed ENSO amplitude relatively well, the majority still simulates its asymmetry between warm (El Niño) and cold (La Niña) phases very poorly. The causes of this major deficiency and consequences thereof are so far not well understood.
View Article and Find Full Text PDFThe El Niño-Southern Oscillation (ENSO), which originates in the Pacific, is the strongest and most well-known mode of tropical climate variability. Its reach is global, and it can force climate variations of the tropical Atlantic and Indian Oceans by perturbing the global atmospheric circulation. Less appreciated is how the tropical Atlantic and Indian Oceans affect the Pacific.
View Article and Find Full Text PDFIn this Review, the middle initial of author Kim M. Cobb was omitted. The original Review has been corrected online.
View Article and Find Full Text PDFChanges in crop yield and production over time are driven by a combination of genetics, agronomics, and climate. Disentangling the role of these various influences helps us understand the capacity of agriculture to adapt to change. Here we explore the impact of climate variability on rice yield and production in the Philippines from 1987-2016 in both irrigated and rainfed production systems at various scales.
View Article and Find Full Text PDFEl Niño events are characterized by surface warming of the tropical Pacific Ocean and weakening of equatorial trade winds that occur every few years. Such conditions are accompanied by changes in atmospheric and oceanic circulation, affecting global climate, marine and terrestrial ecosystems, fisheries and human activities. The alternation of warm El Niño and cold La Niña conditions, referred to as the El Niño-Southern Oscillation (ENSO), represents the strongest year-to-year fluctuation of the global climate system.
View Article and Find Full Text PDFNumerous studies demonstrated that the Pacific Meridional Mode (PMM) can excite Central Pacific (CP) El Niño-Southern Oscillation (ENSO) events and that the PMM is mostly a stochastic phenomenon associated with mid-latitude atmospheric variability and wind-evaporation-SST feedback. Here we show that CP sea surface temperature (SST) variability exhibits high instantaneous correlations both on interannual (ENSO-related) and decadal (Pacific Decadal Oscillation (PDO)-related) timescales with the PMM. By prescribing an idealized interannual equatorial CP ENSO SST forcing in a partially-coupled atmosphere/slab ocean model we are able to generate a realistic instantaneous PMM response consistent with the observed statistical ENSO/PMM relationship.
View Article and Find Full Text PDFEast Asia experienced a record-breaking cold event during the 2015/16 boreal winter, with pronounced impacts on livelihood in the region. We find that this large-scale cold spell can be attributed to the concurrent super El Niño event in the tropical Pacific. Our analysis reveals that all super El Niño winters (1982/83, 1997/98, and 2015/16) were accompanied by a rapid sub-seasonal North Atlantic Oscillation (NAO)/Arctic Oscillation (AO) phase reversal from a positive to a negative state during early January, which was largely caused by the interaction of these super El Niño events with the subtropical jet annual cycle.
View Article and Find Full Text PDFThe El Niño-Southern Oscillation (ENSO) phenomenon, the most pronounced feature of internally generated climate variability, occurs on interannual timescales and impacts the global climate system through an interaction with the annual cycle. The tight coupling between ENSO and the annual cycle is particularly pronounced over the tropical Western Pacific. Here we show that this nonlinear interaction results in a frequency cascade in the atmospheric circulation, which is characterized by deterministic high-frequency variability on near-annual and subannual timescales.
View Article and Find Full Text PDF