The readily available ex-chiral-pool building block (-)-isosteviol was combined with the C 3-symmetric platforms hexahydroxytriphenylene and hexaaminotriptycene providing large and rigid molecular architectures. Because of the persistent cavities these scaffolds are very potent supramolecular affinity materials for head space analysis by quartz crystal microbalances. The scaffolds serve in particular as templates for tracing air-borne arenes at low concentration.
View Article and Find Full Text PDFA Teflon-like coating is the key for the boost in sensitivity of quartz microbalances for the tracing of airborne analytes. Since the undesired signals for the interfering compounds are suppressed and the ones for the targeted compounds (e.g.
View Article and Find Full Text PDFOrganic cages were identified as highly potent affinity materials for the tracing of γ-butyrolactone. The selectivity over ethanol and water is based on the interior functional groups which allow preferential hydrogen bonding to the target analyte.
View Article and Find Full Text PDFPorosity makes powerful affinity materials for quartz crystal microbalances. The shape-persistent organic cages and pores create superior affinity systems to existing ones for direct tracing of aromatic solvent vapors. A shape and size selectivity for the analytes is observed.
View Article and Find Full Text PDFWe report an optical refractive index sensor system based on a planar Bragg grating which is functionalized by substituted γ-cyclodextrin to determine low concentrations of naphthalene in solvent vapor. The sensor system exhibits a quasi-instantaneous shift of the Bragg wavelength and is therefore capable for online detection. The overall shift of the Bragg wavelength reveals a linear relationship to the analyte concentration with a gradient of 12.
View Article and Find Full Text PDF