Publications by authors named "Malte Bachmann"

Acetaminophen (APAP) overdosing is a major cause of acute liver failure worldwide and an established model for drug-induced acute liver injury (ALI). While studying gene expression during murine APAP-induced ALI by 3'mRNA sequencing (massive analysis of cDNA ends, MACE), we observed splenic mRNA accumulation encoding for the neutrophil serine proteases cathepsin G, neutrophil elastase, and proteinase-3 - all are hierarchically activated by cathepsin C (CtsC). This, along with increased serum levels of these proteases in diseased mice, concurs with the established phenomenon of myeloid cell mobilization during APAP intoxication.

View Article and Find Full Text PDF

Type I interferons (IFN) are pro-inflammatory cytokines which can also exert anti-inflammatory effects via the regulation of interleukin (IL)-1 family members. Several studies showed that interferon receptor (IFNAR)-deficient mice develop severe liver damage upon treatment with artificial agonists such as acetaminophen or polyinosinic:polycytidylic acid. In order to investigate if these mechanisms also play a role in an acute viral infection, experiments with the family member Rift Valley fever virus (RVFV) were performed.

View Article and Find Full Text PDF

Murine acetaminophen-induced acute liver injury (ALI) serves as paradigmatic model for drug-induced hepatic injury and regeneration. As major cause of ALI, acetaminophen overdosing is a persistent therapeutic challenge with N-acetylcysteine clinically used to ameliorate parenchymal necrosis. To identify further treatment strategies that serve patients with poor N-acetylcysteine responses, hepatic 3'mRNA sequencing was performed in the initial resolution phase at 24 h/48 h after sublethal overdosing.

View Article and Find Full Text PDF

Gaining detailed knowledge about sex-related immunoregulation remains a crucial prerequisite for the development of adequate disease models and therapeutic strategies enabling personalized medicine. Here, the key parameter of the production of cytokines mediating disease resolution was investigated. Among these cytokines, STAT3-activating interleukin (IL)-22 is principally associated with recovery from tissue injury.

View Article and Find Full Text PDF

Unresolved inflammation maintained by release of danger-associated molecular patterns, particularly high-mobility group box-1 (HMGB1), is crucial for hepatocellular carcinoma (HCC) pathogenesis. To further characterize interactions between leucocytes and necrotic cancerous tissue, a cellular model of necroinflammation was studied in which murine Raw 264.7 macrophages or primary splenocytes were exposed to necrotic lysates (N-lys) of murine hepatoma cells or primary hepatocytes.

View Article and Find Full Text PDF

Interleukin (IL)-22 activates STAT (signal transducer and activator of transcription) 3 and antiapoptotic and proproliferative pathways; but beyond this, the molecular mechanisms by which IL-22 promotes carcinogenesis are poorly understood. Characterizing the molecular signature of IL-22 in human DLD-1 colon carcinoma cells, we observed increased expression of 26 genes, including NNMT (nicotinamide N-methyltransferase, ≤10-fold) and CEA (carcinoembryonic antigen, ≤7-fold), both known to promote intestinal carcinogenesis. ERP27 (endoplasmic reticulum protein-27, function unknown, ≤5-fold) and the proinflammatory ICAM1 (intercellular adhesion molecule-1, ≤4-fold) were also increased.

View Article and Find Full Text PDF

Interleukin (IL)-18 and IL-22 are key components of cytokine networks that play a decisive role in (pathological) inflammation, host defense, and tissue regeneration. Tight regulation of cytokine-driven signaling, inflammation, and immunoactivation is supposed to enable nullification of a given deleterious trigger without mediating overwhelming collateral tissue damage or even activating a cancerous face of regeneration. In fact, feedback regulation by specific cytokine opponents is regarded as a major means by which the immune system is kept in balance.

View Article and Find Full Text PDF

Acetaminophen [paracetamol, -acetyl--aminophenol (APAP)]-induced acute liver injury (ALI) not only remains a persistent clinical challenge but likewise stands out as well-characterized paradigmatic model of drug-induced liver damage. APAP intoxication associates with robust hepatic necroinflammation the role of which remains elusive with pathogenic but also pro-regenerative/-resolving functions being ascribed to leukocyte activation. Here, we shine a light on and put forward a unique role of the interleukin (IL)-1 family member IL-18 in experimental APAP-induced ALI.

View Article and Find Full Text PDF

Interferon (IFN)-γ-inducing interleukin (IL)-18 is a crucial inflammatory cytokine systemically provided by monocytes. It is counteracted by IL-18 binding protein (IL-18BP), a decoy receptor that displays IFNγ-inducibility thus curbing inflammation by negative feedback. Since IL18BP inducibility is pronounced in human epithelial cells but diminished in monocytes, differential IL18BP regulation was investigated herein in both types of cells.

View Article and Find Full Text PDF

Cytokine regulation of high-output nitric oxide (NO) derived from inducible NO synthase (iNOS) is critically involved in inflammation biology and host defense. Herein, we set out to characterize the role of type I interferon (IFN) as potential regulator of hepatic iNOS and . In this regard, we identified in murine Hepa1-6 hepatoma cells a potent synergism between pro-inflammatory interleukin-β/tumor necrosis factor-α and immunoregulatory IFNβ as detected by analysis of iNOS expression and nitrite release.

View Article and Find Full Text PDF

Disturbed homeostasis as a result of tissue stress can provoke leukocyte responses enabling recovery. Since mild hypothermia displays specific clinically relevant tissue-protective properties and interleukin (IL)-22 promotes healing at host/environment interfaces, effects of lowered ambient temperature on IL-22 were studied. We demonstrate that a 5-h exposure of endotoxemic mice to 4°C reduces body temperature by 5.

View Article and Find Full Text PDF

By generating biologically active factors luminal microbiota shape the intestinal micro-milieu thereby regulating pathological processes such as inflammation and carcinogenesis. Preclinical data suggest that bacterial-derived butyrate and the signal transducer and activator of transcription (STAT)-3 activating cytokine interleukin (IL)-22 display concordant protective properties at the inflamed colonic epithelium. Herein, biochemical cooperation between the short-chain fatty acid butyrate and IL-22 was investigated by focusing on human Caco2 colon epithelial/carcinoma cells.

View Article and Find Full Text PDF

Interleukin (IL)-22 is a cytokine displaying tissue protective and pro-regenerative functions in various preclinical disease models. Anti-bacterial, pro-proliferative, and anti-apoptotic properties mediated by activation of the transcription factor signal transducer and activator of transcription (STAT)-3 are key to biological functions of this IL-10 family member. Herein, we introduce RINm5F insulinoma cells as rat β-cell line that, under the influence of IL-22, displays activation of STAT3 with induction of its downstream gene targets Socs3, Bcl3, and Reg3b.

View Article and Find Full Text PDF

Interleukin (IL)-22 is a STAT3-activating cytokine displaying characteristic AU-rich elements (ARE) in the 3'-untranslated region (3'-UTR) of its mRNA. This architecture suggests gene regulation by modulation of mRNA stability. Since related cytokines undergo post-transcriptional regulation by ARE-binding tristetraprolin (TTP), the role of this destabilizing protein in IL-22 production was investigated.

View Article and Find Full Text PDF

Cytokine networks initiated by means of innate immunity are regarded as a major determinant of host defence in response to acute infection by bacteria including Borrelia burgdorferi. Herein, we demonstrate that interferon (IFN)-α, either endogenously produced after exposure of cells to toll-like receptor-9-activating CpG oligonucleotides or provided as recombinant cytokine, weakens activation of the anti-bacterial interleukin (IL)-1/IL-22 axis in human peripheral blood mononuclear cells exposed to viable B. burgdorferi.

View Article and Find Full Text PDF

Overdosing of the analgesic acetaminophen (APAP, paracetamol) is a major cause of acute liver injury. Whereas toxicity is initiated by hepatocyte necrosis, course of disease is regulated by mechanisms of innate immunity having the potential to serve in complex manner pathogenic or pro-regenerative functions. Interleukin (IL)-36γ has been identified as novel IL-1-like cytokine produced by and targeting epithelial (-like) tissues.

View Article and Find Full Text PDF

IL-22, a member of the IL-10 cytokine family, has recently gained significant attention as a protective agent in murine models of diseases driven by epithelial injury. Like its biochemical and functional sibling IL-10, IL-22 elicits cellular activation primarily by engaging the STAT3 signalling pathway. Exclusively produced by leukocytes, but targeting mostly cells of epithelial origin, IL-22 has been proposed as a specialized cytokine messenger acting between leukocytic and non-leukocytic cell compartments.

View Article and Find Full Text PDF

Acetaminophen (APAP, paracetamol)-induced hepatotoxicity, although treatable by timely application of N-acetylcysteine, can be fatal. Because it is among the common causes of acute liver failure in intensive care units and in light of its gradually increasing incidence, the need for novel therapeutic strategies aimed at severe intoxication is apparent. Recently, it has been shown that IL-22, a STAT3-activating cytokine, has the capability to mediate liver protection.

View Article and Find Full Text PDF

Besides their antiviral activity, type I Interferons (IFN) display context-specific immunomodulation. In contrast to long-known IFNα/β, Interleukin (IL)-22 is an anti-bacterial, largely tissue protective cytokine that recently gained attention. Herein, cellular IFNα/IL-22 interactions are investigated.

View Article and Find Full Text PDF

By concerted action in dendritic (DC) and T cells, T-box expressed in T cells (T-bet, Tbx21) is pivotal for initiation and perpetuation of Th1 immunity. Identification of novel T-bet-regulated genes is crucial for further understanding the biology of this transcription factor. By combining siRNA technology with genome-wide mRNA expression analysis, we sought to identify new T-bet-regulated genes in predendritic KG1 cells activated by IL-18.

View Article and Find Full Text PDF

Background: Interleukin-22 (IL-22), recently identified as a crucial parameter of pathology in experimental liver damage, may determine survival in clinical end-stage liver disease. Systematic analysis of serum IL-22 in relation to morbidity and mortality of patients with advanced liver cirrhosis has not been performed so far.

Methods: This is a prospective cohort study including 120 liver cirrhosis patients and 40 healthy donors to analyze systemic levels of IL-22 in relation to survival and hepatic complications.

View Article and Find Full Text PDF

IL-18 is an important mediator involved in chronic inflammatory conditions such as cutaneous lupus erythematosus, psoriasis and chronic eczema. An imbalance between IL-18 and its endogenous antagonist IL-18 binding protein (BP) may account for increased IL-18 activity. IL-27 is a cytokine with dual function displaying pro- and anti-inflammatory properties.

View Article and Find Full Text PDF

IL-22 is an immunoregulatory cytokine displaying pathological functions in models of autoimmunity like experimental psoriasis. Understanding molecular mechanisms driving IL-22, together with knowledge on the capacity of current immunosuppressive drugs to target this process, may open an avenue to novel therapeutic options. Here, we sought to characterize regulation of human IL22 gene expression with focus on the established model of Jurkat T cells.

View Article and Find Full Text PDF

During the last two decades nitric oxide (NO) produced by inducible NO synthase (iNOS or NOS2) has been characterized as immunoregulatory and antimicrobial principle displaying the potential to determine course of disease in a range of infections. Being an enzyme primarily regulated on expressional level, cytokine-driven iNOS appears to be connected in particular with activation of Th1-type immunity. However, with the recent advent of additional, partly overlapping CD4(+) T cell effector subsets, namely Th17 and Th22 cells, a further layer of complexity has been added to immunoregulatory networks determining inflammatory gene expression in the context of microbial infections.

View Article and Find Full Text PDF