Rapid advancements in sequencing technologies have led to significant progress in microbial genomics, yet challenges persist in accurately identifying microbial strain diversity in metagenomic samples, especially when working with noisy long-read data from platforms like Oxford Nanopore Technologies (ONT). In this article, we introduce NanoMGT, a tool designed to enhance marker gene typing in low-complexity mono-species samples, leveraging the unique properties of long reads. NanoMGT excels in its ability to accurately identify mutations amidst high error rates, ensuring the reliable detection of multiple strain-specific marker genes.
View Article and Find Full Text PDFIn resource-limited settings, patients are often first presented to clinical settings when seriously ill and access to proper clinical microbial diagnostics is often very limited or non-existing. On February 16th 2022 we were on a field trip to test a completely field-deployable metagenomics sequencing set-up, that includes DNA purification, sequencing, and bioinformatics analyses using bioinformatics tools installed on a laptop for water samples, just outside Moshi, Tanzania. On our way to the test site, we were contacted by the nearby Machame hospital regarding a child seriously ill with diarrhea and not responding to treatment.
View Article and Find Full Text PDFFor detection of clonal outbreaks in clinical settings, we present a complete pipeline that generates a single-nucleotide polymorphisms-distance matrix from a set of sequencing reads. Importantly, the program is able to handle a separate mix of both short reads from the Illumina sequencing platforms and long reads from Oxford Nanopore Technologies' (ONT) platforms as input. MINTyper performs automated reference identification, alignment, alignment trimming, optional methylation masking, and pairwise distance calculations.
View Article and Find Full Text PDF