Publications by authors named "Malta T"

Article Synopsis
  • Glioblastoma (GBM) is a highly aggressive brain tumor associated with high mortality rates, and this study explores the role of the FAM3C gene in GBM through bioinformatics analysis.
  • Researchers analyzed transcriptomic data to reveal that high levels of FAM3C are linked to poor survival outcomes in GBM patients and identified FAM3C as crucial for several cancer characteristics.
  • The study also discovers a relationship between high FAM3C expression and increased immune cell abundance, suggesting FAM3C could serve as a valuable biomarker for GBM and offers insights for future research directions.
View Article and Find Full Text PDF

Simple and complex carcinomas are the most common type of malignant Canine Mammary Tumors (CMTs), with simple carcinomas exhibiting aggressive behavior and poorer prognostic. Stemness is an ability associated with cancer initiation, malignancy, and therapeutic resistance, but is still few elucidated in canine mammary tumor subtypes. Here, we first validated, using CMT samples, a previously published canine one-class logistic regression machine learning algorithm (OCLR) to predict stemness (mRNAsi) in canine cancer cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed the epigenetic changes in gliomas from 132 patients over time, comparing initial and recurrent tumors in both IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) types.
  • IDHwt gliomas remained stable in their epigenetic profile, while IDHmut gliomas showed a notable decrease in DNA methylation, making their profiles more similar to IDHwt tumors.
  • The research identified HOXD13 as crucial for the evolution of IDHmut tumors and found that treatment led to changes in the tumor microenvironment, like increased blood vessel formation and T-cell presence, mimicking the characteristics of IDHwt gliomas.
View Article and Find Full Text PDF

Cell annotation is a crucial methodological component to interpreting single cell and spatial omics data. These approaches were developed for single cell analysis but are often biased, manually curated and yet unproven in spatial omics. Here we apply a stemness model for assessing oncogenic states to single cell and spatial omic cancer datasets.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) signaling has been widely explored as a therapeutic target in cancer. Sphingosine kinase 2 (SK2), one of the kinases that phosphorylate sphingosine, has a cell type and cell location-dependent mechanism of action, so the ability of SK2 to induce cell cycle arrest, apoptosis, proliferation, and survival is strongly influenced by the cell-context. In contrast to SK1, which is widely studied in different types of cancer, including head and neck cancer, the role of SK2 in the development and progression of oral cancer is still poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Recurrence of meningiomas is hard to predict with current methods, making it important to find noninvasive ways to identify patients at risk of recurrence.
  • This study examines DNA methylation in blood and tissue samples from 155 meningioma patients, discovering unique markers and utilizing artificial intelligence to create models for predicting recurrence.
  • The findings suggest that using liquid biopsy could provide a reliable and noninvasive method for diagnosis and predicting outcomes in meningioma patients, enhancing personalized treatment strategies.
View Article and Find Full Text PDF

Historically, the classification of tumors of the central nervous system (CNS) relies on the histologic appearance of cells under a microscope; however, the molecular era of medicine has resulted in new diagnostic paradigms anchored in the intrinsic biology of disease. The 2021 World Health Organization (WHO) reformulated the classification of CNS tumors to incorporate molecular parameters, in addition to histology, to define many tumor types. A contemporary classification system with integrated molecular features aims to provide an unbiased tool to define tumor subtype, the risk of tumor progression, and even the response to certain therapeutic agents.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic alterations in diffuse gliomas, like NFKBIA deletions, help indicate clinical behavior, although some variability persists.
  • NFKBIA haploinsufficiency is linked to worse patient outcomes and distinct genetic patterns, especially at tumor recurrence.
  • The presence of NFKBIA deletions can predict shorter survival in IDH mutant glioma patients, highlighting the need to include this factor in prognostic models.
View Article and Find Full Text PDF

Head and Neck Cancer (HNC) is a heterogeneous group of cancers, which includes cancers arising in the oral cavity, nasopharynx, oropharynx, hypopharynx, and larynx. Epidemiological studies have revealed that several factors such as tobacco and alcohol use, exposure to environmental pollutants, viral infection, and genetic factors are risk factors for developing HNC. The squamous cell carcinoma of oral tongue (SCCOT), which is significantly more aggressive than the other forms of oral squamous cell carcinoma, presents a propensity for rapid local invasion and spread, and a high recurrence rate.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) has a high mortality rate and can develop in either colitis-dependent (colitis-associated (CA)-CRC) or colitis-independent (sporadic (s)CRC) manner. There has been a significant debate about whether mast cells (MCs) promote or inhibit the development of CRC. Herein we investigated MC activity throughout the multistepped development of CRC in both human patients and animal models.

View Article and Find Full Text PDF

Telomerase reverse transcriptase (TERT) promoter (pTERT) mutation has often been described as a late event in gliomagenesis and it has been suggested as a prognostic biomarker in gliomas other than 1p19q codeleted tumors. However, the characteristics of isocitrate dehydrogenase (IDH) wild type (wt) (IDHwt), pTERTwt glioblastomas are not well known. We recruited 72 adult IDHwt, pTERTwt glioblastomas and performed methylation profiling, targeted sequencing, and fluorescence in situ hybridization (FISH) for TERT structural rearrangement and ALT (alternative lengthening of telomeres).

View Article and Find Full Text PDF

The factors driving therapy resistance in diffuse glioma remain poorly understood. To identify treatment-associated cellular and genetic changes, we analyzed RNA and/or DNA sequencing data from the temporally separated tumor pairs of 304 adult patients with isocitrate dehydrogenase (IDH)-wild-type and IDH-mutant glioma. Tumors recurred in distinct manners that were dependent on IDH mutation status and attributable to changes in histological feature composition, somatic alterations, and microenvironment interactions.

View Article and Find Full Text PDF

Myeloproliferative neoplasms (MPN) are hematological disorders characterized by increased proliferation of precursor and mature myeloid cells. MPN patients may present driver mutations in JAK2, MPL, and CALR genes, which are essential to describe the molecular mechanisms of MPN pathogenesis. Despite all the new knowledge on MPN pathogenesis, many questions remain to be answered to develop effective therapies to cure MPN or impair its progression to acute myeloid leukemia.

View Article and Find Full Text PDF
Article Synopsis
  • DNA methylation abnormalities are common in pituitary neuroendocrine tumors (PitNETs), and this study aimed to use liquid biopsy to detect specific methylation patterns to differentiate PitNETs from other diseases in the sellar region.
  • The researchers analyzed circulating cell-free DNA (cfDNA) from 59 serum and 41 plasma samples of patients with PitNETs and various non-PitNET conditions, finding significant differences in methylome profiles between the two groups.
  • The findings showed that methylation-based profiling from liquid biopsies can potentially serve as a noninvasive diagnostic tool, with machine-learning models achieving over 93% accuracy in distinguishing PitNETs from other conditions, thereby impacting diagnosis and treatment strategies.
View Article and Find Full Text PDF

Critical developmental “master transcription factors” (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription factor Specificity) algorithm to prioritize candidate MTFs using pan-cancer RNA sequencing data.

View Article and Find Full Text PDF

WHO 2016 classified glioblastomas into IDH-mutant and IDH-wildtype with the former having a better prognosis but there was no study on IDH-mutant primary glioblastomas only, as previous series included secondary glioblastomas. We recruited a series of 67 IDH-mutant primary glioblastomas/astrocytoma IV without a prior low-grade astrocytoma and examined them using DNA-methylation profiling, targeted sequencing, RNA sequencing and TERT promoter sequencing, and correlated the molecular findings with clinical parameters. The median OS of 39.

View Article and Find Full Text PDF

Background: Distinct genome-wide methylation patterns cluster pituitary neuroendocrine tumors (PitNETs) into molecular groups associated with specific clinicopathological features. Here we aim to identify, characterize, and validate methylation signatures that objectively classify PitNET into clinicopathological groups.

Methods: Combining in-house and publicly available data, we conducted an analysis of the methylome profile of a comprehensive cohort of 177 tumors (Panpit cohort) and 20 nontumor specimens from the pituitary gland.

View Article and Find Full Text PDF

Background: The detection of somatic mutations in cell-free DNA (cfDNA) from liquid biopsy has emerged as a noninvasive tool to monitor the follow-up of cancer patients. However, the significance of cfDNA clinical utility remains uncertain in patients with brain tumors, primarily because of the limited sensitivity cfDNA has to detect real tumor-specific somatic mutations. This unresolved challenge has prevented accurate follow-up of glioma patients with noninvasive approaches.

View Article and Find Full Text PDF

Background: Metformin (MET) is a hypoglycemic drug used for the treatment of diabetes, despite interference in host immunity against microorganisms. Cutaneous infection caused by pathogens such as Leishmania braziliensis (Lb), the agent responsible for cutaneous leishmaniasis (CL) in Brazil, represents an interesting model in which to evaluate the effects associated with MET.

Objective: To evaluate the modulatory effect of MET in Lb infection.

View Article and Find Full Text PDF

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors.

View Article and Find Full Text PDF

Background: Induced pluripotent stem cells (iPSCs) have enormous potential in developmental biology studies and in cellular therapies. Although extensively studied and characterized in human and murine models, iPSCs from animals other than mice lack reproducible results.

Methods: Herein, we describe the generation of robust iPSCs from equine and bovine cells through lentiviral transduction of murine or human transcription factors Oct4, Sox2, Klf4, and c-Myc and from human and murine cells using similar protocols, even when different supplementations were used.

View Article and Find Full Text PDF

RING-finger E3 ligases are instrumental in the regulation of inflammatory cascades, apoptosis, and cancer. However, their roles are relatively unknown in TGFβ/SMAD signaling. SMAD3 and its adaptors, such as β2SP, are important mediators of TGFβ signaling and regulate gene expression to suppress stem cell-like phenotypes in diverse cancers, including hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

The evolutionary processes that drive universal therapeutic resistance in adult patients with diffuse glioma remain unclear. Here we analysed temporally separated DNA-sequencing data and matched clinical annotation from 222 adult patients with glioma. By analysing mutations and copy numbers across the three major subtypes of diffuse glioma, we found that driver genes detected at the initial stage of disease were retained at recurrence, whereas there was little evidence of recurrence-specific gene alterations.

View Article and Find Full Text PDF

Background: -mutant glioblastoma is classified by the 2016 CNS WHO as a group with good prognosis. However, the actual number of cases examined in the literature is relatively small. We hypothesize that -mutant glioblastoma is not a uniform group and should be further stratified.

View Article and Find Full Text PDF