Publications by authors named "Malsam J"

Article Synopsis
  • The release of neurotransmitters at synapses relies on a series of protein interactions, particularly involving complexins, which play a role in regulating synaptic transmission.
  • Research on the N-terminus of complexin II, focusing on its hydrophobic amino acids, shows that preserving this property supports its stimulatory function, while changes disrupt neurotransmitter release.
  • Specific mutations in the N-terminus, particularly residue changes, can enhance spontaneous release but negatively affect evoked release, highlighting the importance of precise amino acid composition in managing synaptic neurotransmitter dynamics.
View Article and Find Full Text PDF

Background: Pathogenic variants in STXBP1/MUNC18-1 cause severe encephalopathies that are among the most common in genetic neurodevelopmental disorders. Different molecular disease mechanisms have been proposed, and pathogenicity prediction is limited. In this study, we aimed to define a generalized disease concept for STXBP1-related disorders and improve prediction.

View Article and Find Full Text PDF

SNAP25 is one of three neuronal SNAREs driving synaptic vesicle exocytosis. We studied three mutations in SNAP25 that cause epileptic encephalopathy: V48F, and D166Y in the synaptotagmin-1 (Syt1)-binding interface, and I67N, which destabilizes the SNARE complex. All three mutations reduced Syt1-dependent vesicle docking to SNARE-carrying liposomes and Ca-stimulated membrane fusion in vitro and when expressed in mouse hippocampal neurons.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the role of complexin II (Cpx) in regulating neurotransmitter release at central synapses, focusing specifically on its N-terminal region (amino acids 1-27) which plays a critical role in both stimulating and inhibiting synaptic transmission.
  • - Through experiments such as mutagenesis and membrane fusion assays, the research reveals that the hydrophobic characteristics of the N-terminus are important for enhancing spontaneous neurotransmitter release, while alterations in specific amino acids can impair evoked release and affect the release pool size.
  • - The findings highlight the nuanced functions of Cpx in synaptic activity, emphasizing its effect on the balance between spontaneous and evoked neurotransmitter release in mouse hippocampal neurons.
View Article and Find Full Text PDF

Synaptic vesicle proteins, including N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), Synaptotagmin-1 and Complexin, are responsible for controlling the synchronised fusion of synaptic vesicles with the presynaptic plasma membrane in response to elevated cytosolic calcium levels. A range of structures of SNAREs and their regulatory proteins have been elucidated, but the exact organisation of these proteins at synaptic junction membranes remains elusive. Here, we have used cryoelectron tomography to investigate the arrangement of synaptic proteins in an in vitro reconstituted fusion system.

View Article and Find Full Text PDF

The neuronal protein complexin contains multiple domains that exert clamping and facilitatory functions to tune spontaneous and action potential-triggered synaptic release. We address the clamping mechanism and show that the accessory helix of complexin arrests assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex that forms the core machinery of intracellular membrane fusion. In a reconstituted fusion assay, site- and stage-specific photo-cross-linking reveals that, prior to fusion, the complexin accessory helix laterally binds the membrane-proximal C-terminal ends of SNAP25 and VAMP2.

View Article and Find Full Text PDF

Golgins are a family of Golgi-localized long coiled-coil proteins. The major golgin function is thought to be the tethering of vesicles, membranes, and cytoskeletal elements to the Golgi. We previously showed that knockdown of one of the longest golgins, Giantin, altered the glycosylation patterns of cell surfaces and the kinetics of cargo transport, suggesting that Giantin maintains correct glycosylation through slowing down transport within the Golgi.

View Article and Find Full Text PDF

Information transfer across CNS synapses depends on the very low basal vesicle fusion rate and the ability to rapidly upregulate that rate upon Ca influx. We show that local electrostatic repulsion participates in creating an energy barrier, which limits spontaneous synaptic transmission. The barrier amplitude is increased by negative charges and decreased by positive charges on the SNARE-complex surface.

View Article and Find Full Text PDF

Non‐expanding fusion pores have been predicted to constitute rate‐limiting metastable intermediates in a broad range of fusion processes ranging from exocytosis to cell–cell fusion. However, their existence and nature, in particular in intracellular non‐exocytic compartments, remained largely intangible. In this issue, D'Agostino demonstrate that non‐expanding pores are likely long‐lived steady‐state intermediates in yeast vacuoles allowing the cells to adjust their volume to rapidly changing physiology.

View Article and Find Full Text PDF

In budding yeast (e) the multilayered spindle pole body (SPB) is embedded in the nuclear envelope (NE) at fusion sites of the inner and outer nuclear membrane. The SPB is built from 18 different proteins, including the three integral membrane proteins Mps3, Ndc1, and Mps2. These membrane proteins play an essential role in the insertion of the new SPB into the NE.

View Article and Find Full Text PDF

Unlabelled: Whether interactions between synaptotagmin-1 (syt-1) and the soluble NSF attachment protein receptors (SNAREs) are required during neurotransmission is debated. We examined five SNAP-25 mutations designed to interfere with syt-1 interactions. One mutation, D51/E52/E55A, targeted negative charges within region II of the primary interface (Zhou et al.

View Article and Find Full Text PDF
Article Synopsis
  • - Synaptotagmin-1 (Syt1) is crucial for vesicle docking and fusion in chromaffin cells, with its C2B domain interacting with specific membrane proteins and lipids.
  • - A double mutation in Syt1 (R398/399Q) was found to restore docking ability in Syt1-null cells, but this process depended on a certain lipid (PI(4,5)P2); however, it did not restore secretion or fusion capabilities.
  • - The study reveals that distinct regions of the C2B domain in Syt1 play different roles in docking versus triggering vesicle fusion, highlighting the complexity of the mechanisms involved.
View Article and Find Full Text PDF

Munc18-1, a SEC1/Munc18 protein and key regulatory protein in synaptic transmission, can either promote or inhibit SNARE complex assembly. Although the binary inhibitory interaction between Munc18-1 and closed syntaxin 1 is well described, the mechanism of how Munc18-1 stimulates membrane fusion remains elusive. Using a reconstituted assay that resolves vesicle docking, priming, clamping, and fusion during synaptic exocytosis, we show that helix 12 in domain 3a of Munc18-1 stimulates SNAREpin assembly and membrane fusion.

View Article and Find Full Text PDF

Synaptic vesicles fuse with the plasma membrane in response to Ca(2+) influx, thereby releasing neurotransmitters into the synaptic cleft. The protein machinery that mediates this process, consisting of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and regulatory proteins, is well known, but the mechanisms by which these proteins prime synaptic membranes for fusion are debated. In this study, we applied large-scale, automated cryo-electron tomography to image an in vitro system that reconstitutes synaptic fusion.

View Article and Find Full Text PDF

Regulated exocytosis requires the general membrane fusion machinery-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins. Using reconstituted giant unilamellar vesicles containing preassembled t-SNARE proteins (syntaxin 1·SNAP-25), we determined how Munc18-1 controls the docking, priming, and fusion of small unilamellar vesicles containing the v-SNARE VAMP2 and the Ca(2+) sensor synaptotagmin 1. In vitro assays allowed us to position Munc18-1 in the center of a sequential reaction cascade; vesicle docking by synaptotagmin 1 is a prerequisite for Munc18-1 to accelerate trans-SNARE complex (SNAREpin) assembly and membrane fusion.

View Article and Find Full Text PDF

Regulated exocytosis requires that the assembly of the basic membrane fusion machinery is temporarily arrested. Synchronized membrane fusion is then caused by a specific trigger--a local rise of the Ca(2+) concentration. Using reconstituted giant unilamellar vesicles (GUVs), we have analysed the role of complexin and membrane-anchored synaptotagmin 1 in arresting and synchronizing fusion by lipid-mixing and cryo-electron microscopy.

View Article and Find Full Text PDF

This study reports an alternative approach to achieve vitrification where cells are pre-desiccated prior to cooling to cryogenic temperatures for storage. Chinese Hamster Ovary (CHO) cells suspended in a trehalose solution were rapidly and uniformly desiccated to a low moisture content (<0.12 g of water per g of dry weight) using a spin-drying technique.

View Article and Find Full Text PDF

Antero- and retrograde cargo transport through the Golgi requires a series of membrane fusion events. Fusion occurs at the cis- and trans-side and along the rims of the Golgi stack. Four functional SNARE complexes have been identified mediating lipid bilayer merger in the Golgi.

View Article and Find Full Text PDF

Sec1p/Munc18 proteins and SNAP receptors (SNAREs) are key components of the intracellular membrane fusion machinery. Compartment-specific v-SNAREs on a transport vesicle pair with their cognate t-SNAREs on the target membrane and drive lipid bilayer fusion. In a reconstituted assay that dissects the sequential assembly of t-SNARE (syntaxin 1·SNAP-25) and v-/t-SNARE (VAMP2·syntaxin 1·SNAP-25) complexes, and finally measures lipid bilayer merger, we resolved the inhibitory and stimulatory functions of the Sec1p/Munc18 protein Munc18-1 at the molecular level.

View Article and Find Full Text PDF

We describe direct determination of the state of intracellular water, measurement of the intercellular concentration of a cryoprotectant agent (dimethylsulfoxide), and the distribution of organic material in frozen mammalian cells. Confocal Raman microspectroscopy was utilized at cryogenic temperatures with single live cells to conduct high spatial resolution measurements (350 × 350 × 700 nm), which yielded two, we believe, novel observations: 1), intracellular ice formation during fast cooling (50°C/min) causes more pronounced intracellular dehydration than slow cooling (1°C/min); and 2), intracellular dimethylsulfoxide concentration is lower (by as much as 50%) during fast cooling, decreasing the propensity for intracellular vitrification. These observations have a very significant impact for developing successful biopreservation protocols for cells used for therapeutic purposes and for cellular biofluids.

View Article and Find Full Text PDF

Temperature ramp Fourier transform infrared (FTIR) microspectroscopy was utilized to examine hydrogen bonding (HB) in and crystallization of supercooled aqueous acetone solutions. We showed that temperature and concentration-dependent transitions between different water populations, representing distinct HB organization, played very significant roles in ice crystallization and formation of distinct thermodynamic phases in supercooled aqueous solutions. At cryogenic temperatures, mainly three different coexisting thermodynamic phases were identified: a hexagonal ice phase, which exhibited linear planar growth with supercooling; a low water content supercooled solution rich in water monomers and dimers, which froze at lower temperatures as a result of a significant increase in HB networking; and a high water content frozen solution.

View Article and Find Full Text PDF

Complexins (Cpxs) and synaptotagmins regulate calcium-dependent exocytosis. A central helix in Cpx confers specific binding to the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) fusion machinery. An accessory helix in the amino-terminal region inhibits membrane fusion by blocking SNAREpin zippering.

View Article and Find Full Text PDF

Carbohydrates play important roles in the survival of freeze-tolerant organisms. In order to understand the role of carbohydrates on hydrogen bonding (HB) and thermodynamic/kinetic transitions, aqueous trehalose solutions at cryogenic temperatures were analyzed using FTIR spectroscopy. Distinct changes in water-water and water-carbohydrate HB organization were identified during supercooling, freezing, and vitrification.

View Article and Find Full Text PDF

Regulated exocytosis requires tight coupling of the membrane fusion machinery to a triggering signal and a fast response time. Complexins are part of this regulation and, together with synaptotagmins, control calcium-dependent exocytosis. Stimulatory and inhibitory functions have been reported for complexins.

View Article and Find Full Text PDF

SNARE (SNAP receptor) proteins drive intracellular membrane fusion and contribute specificity to membrane trafficking. The formation of SNAREpins between membranes is spatially and temporally controlled by a network of sequentially acting accessory components. These regulators add an additional layer of specificity, arrest SNAREpin intermediates, lower the energy required for fusion, and couple membrane fusion to triggering signals.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7t9inl15l7vf324fb02hshnnul61l8i9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once