Publications by authors named "Malou Henriksen-Lacey"

There is an unmet need for in vitro cancer models that emulate the complexity of human tissues. 3D-printed solid tumor micromodels based on decellularized extracellular matrices (dECMs) recreate the biomolecule-rich matrix of native tissue. Herein a 3D in vitro metastatic melanoma model that is amenable for drug screening purposes and recapitulates features of both the tumor and the skin microenvironment is described.

View Article and Find Full Text PDF

Breast cancer stem cells (CSCs) play a pivotal role in therapy resistance and tumor relapse, emphasizing the need for reliable models that recapitulate the complexity of the CSC tumor microenvironment to accelerate drug discovery. We present a bioprinted breast CSC tumor-stroma model incorporating triple-negative breast CSCs (TNB-CSCs) and stromal cells (human breast fibroblasts), within a breast-derived decellularized extracellular matrix bioink. Comparison of molecular signatures in this model with different clinical subtypes of bioprinted tumor-stroma models unveils a unique molecular profile for artificial CSC tumor models.

View Article and Find Full Text PDF

Despite recent advances in the development of scaffold-based three-dimensional (3D) cell models, challenges persist in imaging and monitoring cell behavior within these complex structures due to their heterogeneous cell distribution and geometries. Incorporating sensors into 3D scaffolds provides a potential solution for real-time, sensing and imaging of biological processes such as cell growth and disease development. We introduce a 3D printed hydrogel-based scaffold capable of supporting both surface-enhanced Raman scattering (SERS) biosensing and imaging of 3D breast cancer cell models.

View Article and Find Full Text PDF

The use of three-dimensional (3D) bioprinting has been proposed for the reproducible production of 3D disease models that can be used for high-throughput drug testing and personalized medicine. However, most such models insufficiently reproduce the features and environment of real tumors. We report the development of bioprinted 3D tumor models for breast cancer, which physically and biochemically mimic important aspects of the native tumor microenvironment, designed to study therapeutic efficacy.

View Article and Find Full Text PDF

3D-printed cell models are currently in the spotlight of medical research. Whilst significant advances have been made, there are still aspects that require attention to achieve more realistic models which faithfully represent the environment. In this work we describe the production of an artery model with cyclic expansive properties, capable of mimicking the different physical forces and stress factors that cells experience in physiological conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Hyperthermia is a cancer treatment method that heats tumor cells above 42 °C to induce cell death and has gained attention for its selectivity.
  • A new hybrid nanostructure was developed, combining plasmonic gold nanorods with a silica shell and iron oxide nanoparticles to respond to both magnetic fields and near-infrared light.
  • This innovative design allows for targeted separation of specific cell populations and enhanced photothermal heating, proving effective in treating human glioblastoma cells.
View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS)-encoded nanoparticles are used for bioimaging, on account of their well-defined Raman spectra and biocompatibility, which allow long incubation times with high signal stability and no cytotoxicity. However, reliable analysis of SERS bioimaging requires quantification of the amount of encoded nanoparticles that have been taken up by cells and the effect of subsequent dilution due to cellular division (mitosis). Although methods such as elemental analysis and flow cytometry can be used to quantify nanoparticle uptake, these are both end-point measurements in which a cell population is screened rather than looking at individual cells.

View Article and Find Full Text PDF

Temperature monitoring is useful in medical diagnosis, and essential during hyperthermia treatments to avoid undesired cytotoxic effects. Aiming to control heating doses, different temperature monitoring strategies have been developed, largely based on luminescent materials, a.k.

View Article and Find Full Text PDF

With the ever-increasing use of 3D cell models toward studying bio-nano interactions and offering alternatives to traditional 2D and experiments, methods to image biological tissue in real time and with high spatial resolution have become a must. A suitable technique therefore is surface-enhanced Raman scattering (SERS)-based microscopy, which additionally features reduced photocytotoxicity and improved light penetration. However, optimization of imaging and postprocessing parameters is still required.

View Article and Find Full Text PDF

The incidence and mortality of cancer demand more innovative approaches and combination therapies to increase treatment efficacy and decrease off-target side effects. We describe a boron-rich nanoparticle composite with potential applications in both boron neutron capture therapy (BNCT) and photothermal therapy (PTT). Our strategy is based on gold nanorods (AuNRs) stabilized with polyethylene glycol and functionalized with the water-soluble complex cobalt (dicarbollide) ([3,3'-Co(1,2-CBH)]), commonly known as COSAN.

View Article and Find Full Text PDF

Visualization of intracellular pH (i-pH) using surface-enhanced Raman spectroscopy (SERS) plays an important role toward understanding of cellular processes including their interactions with nanoparticles. However, conventional two-dimensional SERS imaging often fails to take into consideration changes occurring in the whole-cell volume. We therefore aimed at obtaining a comprehensive i-pH profile of living cells by means of three-dimensional (3D) SERS imaging, thereby visualizing dynamic i-pH distribution changes in a single cell.

View Article and Find Full Text PDF

Silver is arguably the best plasmonic material in terms of optical performance. However, wide application of Ag and Ag-containing nanoparticles is usually hindered by two major drawbacks, namely, chemical degradation and cytotoxicity. We report herein a synthetic method for highly monodisperse polymer-coated Ag nanorods, which are thereby protected against external stimuli (oxidation, light, heat) and are noncytotoxic to various cell lines.

View Article and Find Full Text PDF

When nanoparticles (NPs) are exposed to biological media, proteins are adsorbed, forming a so-called protein corona (PC). This cloud of protein aggregates hampers the targeting and transport capabilities of the NPs, thereby compromising their biomedical applications. Therefore, there is a high interest in the development of technologies that allow control over PC formation, as this would provide a handle to manipulate NPs in biological fluids.

View Article and Find Full Text PDF

The control of temperature during photothermal therapy is key to preventing unwanted damage in surrounding tissue or post-treatment inflammatory responses. Lack of accurate thermal control is indeed one of the main limitations that hyperthermia techniques present to allow their translation into therapeutic applications. We developed a nanoprobe that allows controlled local heating, combined with nanothermometry.

View Article and Find Full Text PDF

This work aims at learning how the size of gold nanocarriers influences the transport of DNA-alkylating antitumoral drugs. For this purpose, we devised conjugates of mercaptoethylmitomycin C (MEMC), a DNA alkylating agent, with gold nanoparticles of different sizes (2, 5, and 14 nm), and studied how size affects drug cytotoxicity, tumor penetrability, cellular uptake, and intracellular localization using two-dimensional (2D) and three-dimensional (3D) cell models. We show that only small, 2 nm, nanoparticles can transport MEMC efficiently to the cell nucleus, whereas MEMC cell uptake is much lower when delivered by these small nanoparticles than with the larger ones.

View Article and Find Full Text PDF

We describe an approach to regulate the cellular uptake of small gold nanoparticles using supramolecular chemistry. The strategy relies on the functionalization of AuNPs with negatively charged pyranines, which largely hamper their penetration in cells. Cellular uptake can be activated in situ through the addition of cationic covalent cages that specifically recognize the fluorescent pyranine dyes and counterbalance the negative charges.

View Article and Find Full Text PDF

The design of compact nanoprobes for multimodal bioimaging is a current challenge and may have a major impact on diagnostics and therapeutics. Multicomponent gold-iron oxide nanoparticles have shown high potential as contrast agents in numerous imaging techniques due to the complementary features of iron oxide and gold nanomaterials. In this paper we describe novel gold-iron oxide Janus magnetic-plasmonic nanoparticles as versatile nanoprobes for multimodal imaging.

View Article and Find Full Text PDF

Polymer coated gold nanospheres are proposed as a tumor selective carrier for the anticancer drug doxorubicin. Thiolated polyethyleneglycol (PEG-SH) and an inulin-amino derivative based copolymer (INU-EDA) were used as stabilizing and coating materials for 40 nm gold nanospheres. The resulting polymer coated gold nanospheres (Au@PEG-INU) showed excellent physicochemical stability and potential stealth like behavior.

View Article and Find Full Text PDF

An impressive development has been achieved toward the production of well-defined "smart" inorganic nanoparticles, in which the physicochemical properties can be controlled and predicted to a high degree of accuracy. Nanoparticle design is indeed highly advanced, multimodal and multitargeting being the norm, yet we do not fully understand the obstacles that nanoparticles face when used in vivo. Increased cooperation between chemists and biochemists, immunologists and physicists, has allowed us to think outside the box, and we are slowly starting to understand the interactions that nanoparticles undergo under more realistic situations.

View Article and Find Full Text PDF

Methods for efficient detachment of cells avoiding damage are required in tissue engineering and regenerative medicine. We introduce a bottom-up approach to build plasmonic substrates using micellar block copolymer nanolithography to generate a 2D array of Au seeds, followed by chemical growth leading to anisotropic nanoparticles. The resulting plasmonic substrates show a broad plasmon band covering a wide part of the visible and near-infrared (NIR) spectral ranges.

View Article and Find Full Text PDF

Gold nanorods have numerous applications in biomedical research, including diagnostics, bioimaging, and photothermal therapy. Even though surfactant removal and surface conjugation with antifouling molecules such as polyethylene glycol (PEG) are required to minimize nonspecific protein binding and cell uptake, the reliable characterization of these processes remains challenging. We propose here the use of laser desorption/ionization mass spectrometry (LDI-MS) to study the ligand exchange efficiency of cetyltrimethylammonium bromide (CTAB)-coated nanorods with different PEG grafting densities and to characterize nanorod internalization in cells.

View Article and Find Full Text PDF

Poly(ethylene glycol) (PEG) has become the gold standard for stabilization of plasmonic nanoparticles (NPs) in biofluids, because it prevents aggregation while minimizing unspecific interactions with proteins. Application of Au NPs in biological environments requires the use of ligands that can target selected receptors, even in the presence of protein-rich media. We demonstrate here the stabilizing effect of low-molecular-weight glycans on both spherical and rod-like plasmonic NPs under physiological conditions, as bench-marked against the well-established PEG ligands.

View Article and Find Full Text PDF

The success of nanoparticle-based therapies will depend in part on accurate delivery to target receptors and organs. There is, therefore, considerable potential in nanoparticles which achieve delivery of the right drug(s) using the right route of administration to the right location at the right time, monitoring the process by non-invasive molecular imaging. A challenge is harnessing immunotherapy via activation of Toll-like receptors (TLRs) for the development of vaccines against major infectious diseases and cancer.

View Article and Find Full Text PDF