Publications by authors named "Mallory Gough"

Background: Multiple sclerosis (MS) typically presents in young adulthood. Recent data show the highest prevalence of MS in people aged 55 to 64 years; however, there are limited studies of this population.

Methods: Administrative US claims data from IBM-Truven MarketScan commercial and Medicare databases (2011-2017) were analyzed.

View Article and Find Full Text PDF

Objective: To assess the efficacy and safety of eslicarbazepine acetate (ESL) monotherapy.

Methods: This post hoc pooled analysis of 2 randomized double-blind studies (093-045 and -046) included adults with partial-onset seizures medically uncontrolled by 1 or 2 antiepileptic drugs (AEDs). Following the baseline period (8 weeks), eligible patients were randomized 2:1 to receive ESL 1,600 mg or 1,200 mg once daily for 18 weeks; the primary endpoint was study exit by meeting predefined exit criteria (signifying worsening seizure control).

View Article and Find Full Text PDF

Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enable cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145.

View Article and Find Full Text PDF

Amyloid-β protein precursor (AβPP) proteolysis by β- and γ-secretases generates neurotoxic amyloid-β (Aβ)-peptides in Alzheimer's disease (AD). We have investigated the role of histidine residues within the extracellular E1 copper binding and Aβ domains of AβPP in its proteolysis. By stably expressing histidine to alanine AβPP mutant constructs in SH-SY5Y cells, we show that mutations in the E1 copper binding domain had no impact on α- or β-secretase processing.

View Article and Find Full Text PDF

The toxic role of amyloid β peptides in Alzheimer's disease is well documented. Their generation is via sequential β- and γ-secretase cleavage of the membrane-bound amyloid precursor protein (APP). Other APP metabolites include the soluble ectodomains sAPPα and sAPPβ and also the amyloid precursor protein intracellular domain (AICD).

View Article and Find Full Text PDF

Alzheimer's disease is a neurodegenerative condition characterized by an accumulation of toxic amyloid beta- (Aβ-)peptides in the brain causing progressive neuronal death. Aβ-peptides are produced by aspartyl proteinase-mediated cleavage of the larger amyloid precursor protein (APP). In contrast to this detrimental "amyloidogenic" form of proteolysis, a range of zinc metalloproteinases can process APP via an alternative "nonamyloidogenic" pathway in which the protein is cleaved within its Aβ region thereby precluding the formation of intact Aβ-peptides.

View Article and Find Full Text PDF