The flexibility and precision of CRISPR-Cas9 and related technologies have made these genome editing tools increasingly popular in agriculture, medicine, and basic science research for the past decade. Genome editing will continue to be relevant and utilized across diverse scientific fields in the future. Given this, students should be introduced to genome editing technologies and encouraged to consider their ethical implications early on in precollege biology curricula.
View Article and Find Full Text PDFBase editors are genome editing tools that enable site-specific base conversions through the chemical modification of nucleobases in DNA. Adenine base editors (ABEs) convert A ⋅ T to G ⋅ C base pairs in DNA by using an adenosine deaminase enzyme to modify target adenosines to inosine intermediates. Due to the lack of a naturally occurring adenosine deaminase that can modify DNA, ABEs were evolved from a tRNA-deaminating enzyme, TadA.
View Article and Find Full Text PDFThe flexibility and precision of CRISPR-Cas9 and related technologies have made these genome editing tools increasingly popular in agriculture, medicine, and basic science research over the past decade. Genome editing will continue to be relevant and utilized across diverse scientific fields in the future. Given this, students should be introduced to genome editing technologies and encouraged to consider their ethical implications early on in pre-college biology curricula.
View Article and Find Full Text PDFEmerg Top Life Sci
November 2019
Base editors are a new family of programmable genome editing tools that fuse ssDNA (single stranded DNA) modifying enzymes to catalytically inactive CRISPR-associated (Cas) endonucleases to induce highly efficient single base changes. With dozens of base editors now reported, it is apparent that these tools are highly modular; many combinations of ssDNA modifying enzymes and Cas proteins have resulted in a variety of base editors, each with its own unique properties and potential uses. In this perspective, we describe currently available base editors, highlighting their modular nature and describing the various options available for each component.
View Article and Find Full Text PDFDeveloping new molecular ligands for the direct detection and tracking of amyloid protein aggregates is key to understanding and defeating myriad neurodegenerative and other disorders including Alzheimer's and Parkinson's diseases. A crucial factor in the performance of an amyloid dye is its ability to detect the amyloid structural motif independent of the sequence of the amyloid-forming protomer. The current study investigates structure-function relationships of a class of novel phenyleneethynylene (PPE)-based dyes and fluorescent polymers using amyloid fibrils formed by two model proteins: lysozyme and insulin.
View Article and Find Full Text PDF