Introduction/aims: Clinically, the chemotherapeutic agent oxaliplatin can cause peripheral neuropathy, impaired balance, and muscle wastage. Using a preclinical model, we investigated whether exercise intervention could improve these adverse conditions.
Methods: Mice were chronically treated with oxaliplatin alone or in conjunction with exercise.
Purpose: Haematological toxicities occur in patients receiving oxaliplatin. Mild anaemia (grade 1-2) is a common side effect and approximately 90% of recipients develop measurable spleen enlargement. Although generally asymptomatic, oxaliplatin-induced splenomegaly is independently associated with complications following liver resection for colorectal liver metastasis and separately with poorer patient outcomes.
View Article and Find Full Text PDFChemotherapy-induced peripheral neuropathy (CIPN) is a severe and debilitating adverse effect of cancer therapy that results from treatment with neurotoxic agents. Although chemotherapy treatment has been shown to inhibit neurite outgrowth from dorsal root ganglion (DRG) neurons in vitro, evidence for this effect in vivo is lacking. In this study, we investigated whether chemotherapy treatment in mice alters the capacity for axonal outgrowth from ex vivo cultured DRG explants.
View Article and Find Full Text PDFThere is increasing evidence that energy metabolism is disturbed in Amyotrophic Lateral Sclerosis (ALS) patients and animal models. Treatment with triheptanoin, the triglyceride of heptanoate, is a promising approach to provide alternative fuel to improve oxidative phosphorylation and aid ATP generation. Heptanoate can be metabolized to propionyl-CoA, which after carboxylation can produce succinyl-CoA and thereby re-fill the tricarboxylic acid (TCA) cycle (anaplerosis).
View Article and Find Full Text PDF