Frequent and severe occurrences of harmful algal blooms increasingly threaten human health by the release of microcystins (MCs). Urgent attention is directed toward managing MCs, as evidenced by rising HAB-related do not drink/do not boil advisories due to unsafe MC levels in drinking water. UV/chlorine treatment, in which UV light is applied simultaneously with chlorine, showed early promise for effectively degrading MC-LR to values below the World Health Organization's guideline limits.
View Article and Find Full Text PDFThis study introduces an innovative approach using highly efficient nanocomposite materials to effectively remove PFAS from water, demonstrating remarkable adsorption capabilities. The nanocomposite was synthesized by integrating a zirconium-based metal-organic framework (MOF) called UiO-66 with graphene oxide (GO) within a polyvinyl alcohol (PVA) matrix. The resulting PVA@UiO-66/GO material features flower-like UiO-66 MOF crystals embedded in the PVA and GO matrix.
View Article and Find Full Text PDFAcetaminophen (APAP) is a well-known type of over-the-counter painkillers and is frequently found in surface waterbodies, causing hepatotoxicity and skin irritation. Due to its persistence and chronic effects on the environment, innovative solutions must be provided to decompose APAP, effectively. Innovative catalysts of tungsten-modified iron oxides (TF) were successfully developed via a combustion method and thoroughly characterized using SEM, TEM, XRD, XPS, a porosimetry analysis, Mössbauer spectroscopy, VSM magnetometry, and EPR.
View Article and Find Full Text PDFEnzyme-mediated systems have been widely employed for the biotransformation of environmental contaminants. However, the catalytic performance of free enzymes is restricted by the rapid loss of their catalytic activity, stability, and reusability. In this work, we developed an enzyme immobilization platform by elaborately anchoring fungal laccase onto arginine-functionalized boron nitride nanosheets (BNNS-Arg@Lac).
View Article and Find Full Text PDFDue to the imperative global energy transition crisis, hydrogen storage and adsorption technologies are becoming popular with the growing hydrogen economy. Recently, complex hydrides have been one of the most reliable materials for storing and transporting hydrogen gas to various fuel cells to generate clean energy with zero carbon emissions. With the ever-increasing carbon emissions, it is necessary to substitute the current energy sources with green hydrogen-based efficient energy-integrated systems.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are oxidatively recalcitrant organic synthetic compounds. PFAS are an exceptional group of chemicals that have significant physical characteristics due to the presence of the most electronegative element (i.e.
View Article and Find Full Text PDFNatural organic matter (NOM) plays a critical role in the mobilization and bioavailability of metals and metalloids in the aquatic environment. Selenium (Se), an environmental contaminant of aquatic systems, has drawn increasing attention over the years. While Se is a vital micronutrient to human beings, animals and plants, excess Se intake may pose serious long-term risks.
View Article and Find Full Text PDFPer- and poly-fluoroalkyl substances (PFAS), a contentious group of highly fluorinated, persistent, and potentially toxic chemicals, have been associated with human health risks. Currently, treatment processes that destroy PFAS are challenged by transforming these contaminants into additional toxic substances that may have unknown impacts on human health and the environment. Electrochemical oxidation (EO) is a promising method for scissoring long-chain PFAS, especially in the presence of natural organic matter (NOM), which interferes with most other treatment approaches used to degrade PFAS.
View Article and Find Full Text PDFA coconut shell (AC1230CX) and a bituminous coal based (F400) granular activated carbon (GAC) were ground with mortar and pestle (MP), a blender, and a bench-scale ball milling unit (BMU). Blender was the most time-efficient for particle size reduction. Four size fractions ranging from 20 × 40 to 200 × 325 were characterized along with the bulk GACs.
View Article and Find Full Text PDFArsenic (As) is abundant in the environment and can be found in both organic (e.g., methylated) and inorganic (e.
View Article and Find Full Text PDFThe synthetic dye discharge is responsible for nearly one-fifth of the total water pollution from textile industry, which poses both environmental and public health risks. Herein, a solid substrate inoculated with fungi is proposed as an effective and environmentally friendly approach for catalyzing organic dye degradation. was inoculated onto commercially available solid substrates such as sorghum, bran, and husk.
View Article and Find Full Text PDFCurr Opin Green Sustain Chem
April 2023
Photoelectrocatalytic water splitting and organic reforming have recently received significant attention among researchers due to the potential opportunity to convert sunlight into hydrogen energy using efficient and low-cost photoelectrode materials under practical operating conditions. This paper discusses an overview of various aspects related to the implementation of photoelectrochemical (PEC) cells for hydrogen generation. Information on () reaction energies of photosplitting and photoreforming, () state-of-the-art semiconductor-based materials for PEC hydrogen evolution reaction (HER) active both under UV and visible-light irradiation, () PEC photo-efficiency indicators, and () criteria for the standardization of photoelectrochemical reactor performances are summarized.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are a set of synthetic chemicals which contain several carbon-fluorine (C-F) bonds and have been in production for the past eight decades. PFAS have been used in several industrial and consumer products including nonstick pans, food packaging, firefighting foams, and carpeting. PFAS require proper investigations worldwide due to their omnipresence in the biotic environment and the resulting pollution to drinking water sources.
View Article and Find Full Text PDFAdvanced materials related to sensing, actuation, catalysis, and other functionalities for interactive devices depend on surface interactions and quantum effects in solids [...
View Article and Find Full Text PDFThe mother earth is a source of natural resources that, in conjunction with anthropogenic activities, generates a wide spectrum of different biowastes. These biomaterials can be used as low-cost raw feedstock to produce bioenergy, value-added products, and other commodities. However, the improper management and disposal of these biowastes can generate relevant environmental impacts.
View Article and Find Full Text PDFThis paper reviews the currently used pretreatment methods for microplastics (MPs) analysis in soil and freshwater sediments, primarily sample processing, pretreatment, and characterization methods for MPs analysis. In addition, analytical tools (e.g.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2022
Advanced catalysts are crucial for a wide range of chemical, pharmaceutical, energy, and environmental applications. They can reduce energy barriers and increase reaction rates for desirable transformations, making many critical large-scale processes feasible, eco-friendly, energy-efficient, and affordable. Advances in nanotechnology have ushered in a new era for heterogeneous catalysis.
View Article and Find Full Text PDFThe development of remediation technology for Per- and poly-fluoroalkyl substances (PFAS) has become one of the nation's top research priorities as adverse impacts to environmental and human health have been increasingly identified. Of various water treatment routes, high-pressure membrane processes such as nanofiltration (NF) and reverse osmosis (RO) are considered most promising by virtue of the excellent rejection of both short- and long-chain PFAS and the proven technological maturity demonstrated with various water sources. Consequently, research activities have rapidly increased to accommodate research needs to advance NF and RO processes targeting PFAS removal from the aquatic environment.
View Article and Find Full Text PDFMunicipal wastewater has been identified as a potential source of natural phosphorus (P) that is projected to become depleted in a few decades based on current exploitation rates. This paper focuses on combining a bench-scale anaerobic/anoxic/aerobic membrane bioreactor (MBR) and magnesium carbonate (MgCO)-based pellets to effectively recover P from municipal wastewater. Ethanol was introduced into the anoxic zone of the MBR system as an external carbon source to improve P release via the enhanced biological phosphorus removal (EBPR) mechanism, making it available for adsorption by the continuous-flow MgCO pellet column.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS), which are present in many waters, have detrimental impacts on human health and the environment. Reverse osmosis (RO) and nanofiltration (NF) have shown excellent PFAS separation performance in water treatment; however, these membrane systems do not destroy PFAS but produce concentrated residual streams that need to be managed. Complete destruction of PFAS in RO and NF concentrate streams is ideal, but long-term sequestration strategies are also employed.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are a family of fluorinated organic compounds of anthropogenic origin. Due to their unique chemical properties, widespread production, environmental distribution, long-term persistence, bioaccumulative potential, and associated risks for human health, PFAS have been classified as persistent organic pollutants of significant concern. Scientific evidence from the last several decades suggests that their widespread occurrence in the environment correlates with adverse effects on human health and ecology.
View Article and Find Full Text PDFEffective recovery of phosphorus from municipal wastewater could be one of the best practical alternatives to protect aquatic environments from eutrophication and save natural phosphorus resources. This paper focuses on validating magnesium carbonate (MgCO)-based pellets combined with a bench-scale anoxic/aerobic membrane bioreactor (MBR) system for advanced phosphorus recovery from municipal wastewater. As the flow rate of wastewater into the MgCO column decreased from 10 L/d to 2.
View Article and Find Full Text PDF