Members of the genus are monecious wind-pollinated trees in the family Juglandaceae with highly heterozygous genomes, which greatly complicates genome sequence assembly. The genomes of interspecific hybrids are usually comprised of haploid genomes of parental species. We exploited this attribute of interspecific hybrids to avoid heterozygosity and sequenced an interspecific hybrid × using a novel combination of single-molecule sequencing and optical genome mapping technologies.
View Article and Find Full Text PDFBackground: The mountainous region between the Caucasus and China is considered to be the center of domestication for grapevine. Despite the importance of Central Asia in the history of grape growing, information about the extent and distribution of grape genetic variation in this region is limited in comparison to wild and cultivated grapevines from around the Mediterranean basin. The principal goal of this work was to survey the genetic diversity and relationships among wild and cultivated grape germplasm from the Caucasus, Central Asia, and the Mediterranean basin collectively to understand gene flow, possible domestication events and adaptive introgression.
View Article and Find Full Text PDFThe distribution and survival of trees during the last glacial maximum (LGM) has been of interest to paleoecologists, biogeographers, and geneticists. Ecological niche models that associate species occurrence and abundance with climatic variables are widely used to gain ecological and evolutionary insights and to predict species distributions over space and time. The present study deals with the glacial history of walnut to address questions related to past distributions through genetic analysis and ecological modeling of the present, LGM and Last Interglacial (LIG) periods.
View Article and Find Full Text PDFGrapes are one of the most economically and culturally important crops worldwide, and they have been bred for both winemaking and fresh consumption. Here we evaluate patterns of diversity across 33 phenotypes collected over a 17-year period from 580 table and wine grape accessions that belong to one of the world's largest grape gene banks, the grape germplasm collection of the United States Department of Agriculture. We find that phenological events throughout the growing season are correlated, and quantify the marked difference in size between table and wine grapes.
View Article and Find Full Text PDFMarker-assisted selection (MAS) in stone fruit ( species) breeding is currently difficult to achieve due to the polygenic nature of the most relevant agronomic traits linked to fruit quality. Genotyping by sequencing (GBS), however, provides a large quantity of useful data suitable for fine mapping using Single Nucleotide Polymorphisms (SNPs) from a reference genome. In this study, GBS was used to genotype 272 seedlings of three F1 Japanese plum ( Lindl) progenies derived from crossing "98-99" (as a common female parent) with "Angeleno," "September King," and "September Queen" as male parents.
View Article and Find Full Text PDFThe domesticated almond [Prunus dulcis (L.) Batsch] and peach [P. persica (Mill.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs), a class of small non-coding endogenous RNAs that regulate gene expression post-transcriptionally, play multiple key roles in plant growth and development and in biotic and abiotic stress response. Knowledge and roles of miRNAs in pomegranate fruit development have not been explored.
Results: Pomegranate, which accumulates a large amount of anthocyanins in skin and arils, is valuable to human health, mainly because of its antioxidant properties.
Background: Mutations often accompany DNA replication. Since there may be fewer cell cycles per year in the germlines of long-lived than short-lived angiosperms, the genomes of long-lived angiosperms may be diverging more slowly than those of short-lived angiosperms. Here we test this hypothesis.
View Article and Find Full Text PDFWild and loss-of-function alleles of the 5 - O - glucosyltransferase gene responsible for synthesis of diglucoside anthocyanins in Vitis were characterized. The information aids marker development for tracking this gene in grape breeding. Anthocyanins in red grapes are present in two glycosylation states: monoglucoside (3-O-glucoside) and diglucoside (3, 5-di-O-glucoside).
View Article and Find Full Text PDFTerroir, the unique interaction between genotype, environment, and culture, is highly refined in domesticated grape (Vitis vinifera). Toward cultivating terroir, the science of ampelography tried to distinguish thousands of grape cultivars without the aid of genetics. This led to sophisticated phenotypic analyses of natural variation in grape leaves, which within a palmate-lobed framework exhibit diverse patterns of blade outgrowth, hirsuteness, and venation patterning.
View Article and Find Full Text PDFThe genus Vitis (the grapevine) is a group of highly diverse, diploid woody perennial vines consisting of approximately 60 species from across the northern hemisphere. It is the world's most valuable horticultural crop with ~8 million hectares planted, most of which is processed into wine. To gain insights into the use of wild Vitis species during the past century of interspecific grape breeding and to provide a foundation for marker-assisted breeding programmes, we present a principal components analysis (PCA) based ancestry estimation method to calculate admixture proportions of hybrid grapes in the United States Department of Agriculture grape germplasm collection using genome-wide polymorphism data.
View Article and Find Full Text PDFUnderstanding relationships among species is a fundamental goal of evolutionary biology. Single nucleotide polymorphisms (SNPs) identified through next generation sequencing and related technologies enable phylogeny reconstruction by providing unprecedented numbers of characters for analysis. One approach to SNP-based phylogeny reconstruction is to identify SNPs in a subset of individuals, and then to compile SNPs on an array that can be used to genotype additional samples at hundreds or thousands of sites simultaneously.
View Article and Find Full Text PDFBackground: A genome-wide set of single nucleotide polymorphisms (SNPs) is a valuable resource in genetic research and breeding and is usually developed by re-sequencing a genome. If a genome sequence is not available, an alternative strategy must be used. We previously reported the development of a pipeline (AGSNP) for genome-wide SNP discovery in coding sequences and other single-copy DNA without a complete genome sequence in self-pollinating (autogamous) plants.
View Article and Find Full Text PDFPersian walnut (Juglans regia L.) is an economically important tree for its nut crop and timber. To gain insight into the structure and evolution of the walnut genome, we constructed two bacterial artificial chromosome (BAC) libraries, containing a total of 129,024 clones, from in vitro-grown shoots of J.
View Article and Find Full Text PDFWalnuts are a major crop of many countries and mostly cultivated in large-scale plantations with few cultivars. Landraces provide important genetic reservoirs; thus, understanding factors influencing the geographic distribution of genetic variation in crop resources is a fundamental goal of agrobiodiversity conservation. Here, we investigated the role of human settlements and kinship on genetic variation and population structure of two walnut species: Juglans regia, an introduced species widely cultivated for its nuts, and J.
View Article and Find Full Text PDFThe grape is one of the earliest domesticated fruit crops and, since antiquity, it has been widely cultivated and prized for its fruit and wine. Here, we characterize genome-wide patterns of genetic variation in over 1,000 samples of the domesticated grape, Vitis vinifera subsp. vinifera, and its wild relative, V.
View Article and Find Full Text PDFOne hundred ninety-four germplasm accessions of fig representing the four fig types, Common, Smyrna, San Pedro, and Caprifig were analyzed for genetic diversity, structure, and differentiation using genetic polymorphism at 15 microsatellite loci. The collection showed considerable polymorphism with observed number of alleles per locus ranging from four for five different loci, MFC4, LMFC14, LMFC22, LMFC31 and LMFC35 to nine for LMFC30 with an average of 4.9 alleles per locus.
View Article and Find Full Text PDFAccumulation of bioactive compounds and storage components during developmental stages of mango ginger ( Curcuma amada Roxb.) rhizome was investigated from 60 to 240 days, as a function of physiological maturity. Four distinct developmental phases were defined, namely, vegetative phase (up to 60 days from planting), initiation and development phase (60-150 days), maturation phase (150-180 days), and senescence phase (180 days).
View Article and Find Full Text PDF222 cultivated (Vitis vinifera) and 22 wild (V. vinifera ssp. sylvestris) grape accessions were analysed for genetic diversity and differentiation at eight microsatellite loci.
View Article and Find Full Text PDF