The long-term objective of this work is to understand the mechanisms by which electrical stimulation based movement therapies may harness neural plasticity to accelerate and enhance sensorimotor recovery after incomplete spinal cord injury (iSCI). An adaptive neuromuscular electrical stimulation (aNMES) paradigm was implemented in adult Long Evans rats with thoracic contusion injury (T8 vertebral level, 155+/-2 Kdyne). In lengthy sessions with lightly anesthetized animals, hip flexor and extensor muscles were stimulated using an aNMES control system in order to generate desired hip movements.
View Article and Find Full Text PDFNeuromotor therapy after spinal cord or brain injury often attempts to utilize activity-dependent plasticity to promote functional recovery. Neuromuscular electrical stimulation that activates paralyzed or paretic muscles may enhance passive assistance therapy by activating more muscle mass and enriching the sensory pattern with appropriately timed muscle spindle activation. To enable studies of activity-dependent plasticity, a rodent model for stimulation-assisted locomotor therapy was developed previously.
View Article and Find Full Text PDF