Publications by authors named "Mallesham Baithy"

Intramolecular charge transfer (ICT)-based chromophores are highly sought after for designing near-infrared (NIR) absorbing and emitting dyes as well as for designing materials for nonlinear optical (NLO) applications. The properties of these 'push-pull' molecules can easily be modified by varying the electronic donor (D) and acceptor (A) groups as well as the π-conjugation linker. This study presents a methodical approach and employs quantum chemical analysis to explore the relationship between the structural features, electro-optical properties, and the NLO characteristics of molecules with D-π-A framework.

View Article and Find Full Text PDF

Herein, the efficacy of WO-promoted CeO-SiO and CeO-ZrO mixed oxide catalysts in the solvent-free selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as an oxidant is reported. We evaluated the effects of the oxidant and catalyst concentration, reaction duration, and temperature on the reaction with an aim to optimize the reaction conditions. The as-prepared CeO, CeO-ZrO, CeO-SiO, WO/CeO, WO/CeO-ZrO, and WO/CeO-SiO catalysts were characterized by X-ray diffraction (XRD), N adsorption-desorption, Raman spectroscopy, temperature-programmed desorption of ammonia (TPD-NH), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Selective transformation of levulinic acid (LA) to γ-valerolactone (GVL) using novel heterogeneous catalysts is one of the promising strategies for viable biomass processing. In this framework, we developed a continuous flow process for the selective hydrogenation of LA to GVL using several nanostructured Ni/SiO catalysts. The structural, textural, acidic, and redox properties of Ni/SiO catalysts, tuned by selectively varying the Ni amount from 5 to 40 wt %, were critically investigated using numerous materials characterization techniques.

View Article and Find Full Text PDF

This work investigates the structure-activity properties of CuOx-decorated CeO2 nanocubes with a meticulous scrutiny on the role of the CuOx/CeO2 nanointerface in the catalytic oxidation of diesel soot, a critical environmental problem all over the world. For this, a systematic characterization of the materials has been undertaken using transmission electron microscopy (TEM), transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDS), high-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM), scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS), X-ray diffraction (XRD), Raman, N2 adsorption-desorption, and X-ray photoelectron spectroscopy (XPS) techniques. The TEM images show the formation of nanosized CeO2 cubes (∼25 nm) and CuOx nanoparticles (∼8.

View Article and Find Full Text PDF