Publications by authors named "Mallarie Yeager"

Marine protected areas (MPAs) are widely implemented tools for long-term ocean conservation and resource management. Assessments of MPA performance have largely focused on specific ecosystems individually and have rarely evaluated performance across multiple ecosystems either in an individual MPA or across an MPA network. We evaluated the conservation performance of 59 MPAs in California's large MPA network, which encompasses 4 primary ecosystems (surf zone, kelp forest, shallow reef, deep reef) and 4 bioregions, and identified MPA attributes that best explain performance.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying how well marine protected areas (MPAs) are doing in protecting fish and sea creatures.
  • They use different methods to compare the number of animals inside the MPA to those outside to see if the MPA is successful.
  • Overall, most studies show that MPAs help increase the number and size of sea creatures, but not all studies have enough long-term information to confirm this impact.
View Article and Find Full Text PDF

The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats.

View Article and Find Full Text PDF

Identifying the factors that destabilize communities is critical for predicting and mitigating the ecological impacts of environmental change. Although theory has shown that local ecosystem size and regional dispersal can determine biodiversity, less is known about the direct and indirect effects of these factors on community stability. Here we show that multitrophic community instability of invertebrates and fishes in coastal ponds is negatively related to local pond size and positively related to distance to the ocean, a proxy for dispersal limitation.

View Article and Find Full Text PDF

Predator-prey interactions are strongly influenced by habitat structure, particularly in coastal marine habitats such as seagrasses in which structural complexity (SC) may vary over small spatial scales. For seagrass mesopredators such as juvenile fishes, optimality models predict that fitness will be maximized at levels of SC that enhance foraging but minimize predation risk, both of which are functions of body size. We tested the hypothesis that in eelgrass (Zostera marina) habitat, optimal SC for juvenile giant kelpfish (Heterostichus rostratus), an abundant eelgrass mesopredator in southern California, changes through ontogeny.

View Article and Find Full Text PDF