Publications by authors named "Malkova L"

Objective: Area tempestas, a functionally defined region in the anterior piriform cortex, was identified as a crucial ictogenic trigger zone in the rat brain in the 1980s. However, whether the primate piriform cortex can trigger seizures remains unknown. Here, in a nonhuman primate model, we aimed to localize a similar trigger zone in the piriform cortex and, subsequently, evaluated the ability of focal inhibition of the substantia nigra pars reticulata (SNpr) to suppress the evoked seizures.

View Article and Find Full Text PDF
Article Synopsis
  • Unconditioned defense responses to looming threats include freezing and fleeing behaviors observed in rodents, with this study focusing on freezing without an escape route.
  • A modified looming threat task revealed that both male and female rats exhibited specific freezing responses before, during, and after the threat, indicating a prolonged reaction to the stimulus.
  • The research also found that the use of certain GABA-A receptor modulators affected freezing behavior differently based on the sex of the rats, highlighting the need for further exploration of treatments for anxiety that persist beyond immediate threat exposure.
View Article and Find Full Text PDF

Serotonin signaling plays critical roles in social and emotional behaviors. Likewise, decades of research demonstrate that the amygdala is a prime modulator of social behavior. Permanent excitotoxic lesions and transient amygdala inactivation consistently increase social behaviors in non-human primates.

View Article and Find Full Text PDF

The nucleus accumbens (NAc) is a central component of the brain circuitry that mediates motivated behavior, including reward processing. Since the rewarding properties of social stimuli have a vital role in guiding behavior (both in humans and nonhuman animals), the NAc is likely to contribute to the brain circuitry controlling social behavior. In rodents, prior studies have found that focal pharmacological inhibition of NAc and/or elevation of dopamine in NAc increases social interactions.

View Article and Find Full Text PDF
Article Synopsis
  • Research highlights the crucial role of the hippocampus in spatial memory, particularly in navigating through spaces, as evidenced by deficits observed in various species including rodents and humans when the hippocampus is damaged.
  • The study specifically examines the Hamilton Search Task (HST), revealing that male rhesus macaques with hippocampal lesions performed poorly compared to control animals, indicating that the hippocampus is essential for this non-navigational spatial memory task.
  • The findings suggest that the HST is a valuable tool for assessing hippocampal function in non-human primates, and they address inconsistencies in previous research that found minimal effects of hippocampal damage on spatial memory.
View Article and Find Full Text PDF

Sensorimotor gating is the ability to suppress motor responses to irrelevant sensory inputs. This response is disrupted in a range of neuropsychiatric disorders. Prepulse inhibition (PPI) of the acoustic startle response (ASR) is a form of sensorimotor gating in which a low-intensity prepulse immediately precedes a startling stimulus, resulting in an attenuation of the startle response.

View Article and Find Full Text PDF

The bed nucleus of the stria terminalis (BNST) has been implicated in a variety of social behaviors, including aggression, maternal care, mating behavior, and social interaction. Limited evidence from rodent studies suggests that activation of the BNST results in a decrease in social interaction between unfamiliar animals. The role of the BNST in social interaction in primates remains wholly unexamined.

View Article and Find Full Text PDF
Article Synopsis
  • Goal-directed behavior and habit formation are different processes that can sometimes compete, with their balance influenced by experience and specific conditions.
  • This study investigated the effects of extended training on goal-directed behavior in macaques using a reinforcer devaluation task, which had not been previously evaluated in nonhuman primates.
  • Results showed that while both goal-directed behavior and habit formation were observed, extended training did not lead to habit formation as seen in rodents, indicating that these macaques maintained sensitivity to changes in reinforcer value.
View Article and Find Full Text PDF

Cholinergic neurotransmission within the hippocampus has long been suggested to play a pivotal role in memory processing, based partly on the assumption that the well-established amnestic effects of systemic cholinergic receptor blockade are mediated by the hippocampus. However, experimental evidence suggests that this may not be the case; a growing number of studies employing selective lesion or pharmacological approaches to disrupt cholinergic transmission within the hippocampus have failed to find robust deficits in either learning or memory, primarily in rodent models. Here, we evaluated the contribution of nicotinic acetylcholine receptor (nAChR)- and muscarinic acetylcholine receptor (mAChR)-mediated neurotransmission in the hippocampus of rhesus macaques for performance in a hippocampal-dependent spatial memory task, the Hamilton Search Task.

View Article and Find Full Text PDF

The deep and intermediate layers of the superior colliculus (DLSC) respond to visual, auditory, and tactile inputs and act as a multimodal sensory association area. In turn, activity in the DLSC can drive orienting and avoidance responses-such as saccades and head and body movements-across species, including in rats, cats, and non-human primates. As shown in rodents, DLSC also plays a role in regulating pre-pulse inhibition (PPI) of the acoustic startle response (ASR), a form of sensorimotor gating.

View Article and Find Full Text PDF

The Hamilton Search Task (HST) is a test of nonnavigational spatial memory that is dependent on the hippocampus. The parahippocampal cortex (PHC) is a major route for spatial information to reach the hippocampus, but the extent to which the PHC and hippocampus function independently of one another in the context of nonnavigational spatial memory is unclear. Here, we tested the hypotheses that (1) bilateral pharmacological inactivation of the PHC would impair HST performance, and (2) that functional disconnection of the PHC and hippocampus by contralateral (crossed) inactivation would likewise impair performance.

View Article and Find Full Text PDF

The amygdala is a key component of the neural circuits mediating the processing and response to emotionally salient stimuli. Amygdala lesions dysregulate social interactions, responses to fearful stimuli, and autonomic functions. In rodents, the basolateral and central nuclei of the amygdala have divergent roles in behavioral control.

View Article and Find Full Text PDF

Neuropsychological and neuroimaging studies have suggested the presence of a fast, subcortical route for the processing of emotionally-salient visual information in the primate brain. This putative pathway consists of the superior colliculus (SC), pulvinar and amygdala. While the presence of such a pathway has been confirmed in sub-primate species, it has yet to be documented in the primate brain using conventional anatomical methods.

View Article and Find Full Text PDF

Epilepsy is associated with a variety of neuropsychiatric comorbidities, including both anxiety and depression. Despite high occurrences of depression and anxiety seen in human epilepsy populations, little is known about the etiology of these comorbidities. Experimental models of epilepsy provide a platform to disentangle the contribution of acute seizures, genetic predisposition, and underlying circuit pathologies to anxious and depressive phenotypes.

View Article and Find Full Text PDF

The basal ganglia are an evolutionarily old group of structures, with gross organization conserved across species. Despite this conservation, there is evidence suggesting that anatomical organization of a key output nucleus of the basal ganglia, the substantia nigra pars reticulata (SNpr), diverges across species. Nevertheless, there are relatively few comparative studies examining the impact of manipulations of SNpr across species.

View Article and Find Full Text PDF

Reward contingencies are dynamic: outcomes that were valued at one point may subsequently lose value. Action selection in the face of dynamic reward associations requires several cognitive processes: registering a change in value of the primary reinforcer, adjusting the value of secondary reinforcers to reflect the new value of the primary reinforcer, and guiding action selection to optimal choices. Flexible responding has been evaluated extensively using reinforcer devaluation tasks.

View Article and Find Full Text PDF

The capacity to adjust actions based on new information is a vital cognitive function. An animal's ability to adapt behavioral responses according to changes in reward value can be measured using a reinforcer devaluation task, wherein the desirability of a given object is reduced by decreasing the value of the associated food reinforcement. Elements of the neural circuits serving this ability have been studied in both rodents and nonhuman primates.

View Article and Find Full Text PDF

Selective, fiber-sparing excitotoxic lesions are a state-of-the-art tool for determining the causal contributions of different brain areas to behavior. For nonhuman primates especially, it is advantageous to keep subjects with high-quality lesions alive and contributing to science for many years. However, this requires the ability to estimate lesion extent accurately.

View Article and Find Full Text PDF

Rapid and reflexive responses to threats are present across phylogeny. The neural circuitry mediating reflexive defense reactions has been well-characterized in a variety of species, for example, in rodents and cats, the detection of and species-typical response to threats is mediated by a network of structures including the midbrain tectum (deep and intermediate layers of the superior colliculus [DLSC]), periaqueductal gray (PAG), and forebrain structures such as the amygdala and hypothalamus. However, relatively little is known about the functional architecture of defense circuitry in primates.

View Article and Find Full Text PDF

The amygdala is an integrator of affective processing, and a key component of a network regulating social behavior. While decades of lesion studies in nonhuman primates have shown alterations in social interactions after amygdala damage, acute manipulations of the amygdala in primates have been underexplored. We recently reported (Wellman, Forcelli, Aguilar, & Malkova, 2016) that acute pharmacological inhibition of the basolateral complex of the amygdala (BLA) or the central nucleus of the amygdala increased affiliative social interactions in experimental dyads of macaques; this was achieved through microinjection of a GABA-A receptor agonist.

View Article and Find Full Text PDF

The present study tested whether relational memory processes, as measured by the transverse patterning problem, are late-developing in nonhuman primates as they are in humans. Eighteen macaques ranging from 3 to 36 months of age, were trained to solve a set of visual discriminations that formed the transverse patterning problem. Subjects were trained at 3, 4-6, 12, 15-24 or 36 months of age to solve three discriminations as follows: 1) A+ vs.

View Article and Find Full Text PDF

Unlabelled: Both hypoactivity and hyperactivity in the amygdala are associated with perturbations in social behavior. While >60 years of experimental manipulations of the amygdala in animal models have shown that amygdala is critical for social behavior, many of these studies contradict one another. Moreover, several questions remain unaddressed.

View Article and Find Full Text PDF

Brain circuitry underlying defensive behaviors includes forebrain modulatory sites, e.g. the amygdala and hypothalamus, and midbrain effector regions, such as the deep/intermediate layers of the superior colliculus (DLSC).

View Article and Find Full Text PDF
Article Synopsis
  • The perirhinal cortex (PRc) is crucial for visual recognition memory, with specific medial subregions identified as key players through a study on macaques.
  • Disruption of the medial PRc significantly impaired recognition memory primarily at longer delay intervals (30 and 60 seconds), while the lateral PRc did not exhibit the same effects.
  • The research further highlights that both NMDA and AMPA receptor activity are essential for object recognition memory, enhancing our understanding of PRc's role beyond what has been previously known.
View Article and Find Full Text PDF

Unlike adult damage, neonatal damage to the inferior prefrontal convexity (IC) in monkeys spares learning and performance on the delayed nonmatching-to-sample (DNMS) task ( Málková et al. 2000). We investigated whether this sparing was due to compensation by undamaged orbital frontal cortex (O), an area also critical for DNMS, by comparing combined IC and O damage (Neo-ICO) with damage to O alone (Neo-O).

View Article and Find Full Text PDF