Background: Developmental and epileptic encephalopathies (DEE) are rare but severe neurodevelopmental disorders characterised by early-onset seizures often combined with developmental delay, behavioural and cognitive deficits. Treatment for DEEs is currently limited to seizure control and provides no benefits to the patients' developmental and cognitive outcomes. Genetic variants are the most common cause of DEE with KCNQ2 being one of the most frequently identified disease-causing genes.
View Article and Find Full Text PDFMild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE) is an important cause of drug-resistant epilepsy. A significant subset of individuals diagnosed with MOGHE display somatic mosaicism for loss-of-function variants in SLC35A2, which encodes the UDP-galactose transporter. We developed a mouse model to investigate how disruption of this transporter leads to a malformation of cortical development.
View Article and Find Full Text PDFJ Neurosci Methods
September 2024
During the last decade brain organoids have emerged as an attractive model system, allowing stem cells to be differentiated into complex 3D models, recapitulating many aspects of human brain development. Whilst many studies have analysed anatomical and cytoarchitectural characteristics of organoids, their functional characterisation has been limited, and highly variable between studies. Standardised, consistent methods for recording functional activity are critical to providing a functional understanding of neuronal networks at the synaptic and network level that can yield useful information about functional network phenotypes in disease and healthy states.
View Article and Find Full Text PDFDe novo variants in the Na1.2 voltage-gated sodium channel gene SCN2A are among the major causes of developmental and epileptic encephalopathies (DEE). Based on their biophysical impact on channel conductance and gating, SCN2A DEE variants can be classified into gain-of-function (GoF) or loss-of-function (LoF).
View Article and Find Full Text PDFMany developmental and epileptic encephalopathies (DEEs) result from variants in cation channel genes. Using mRNA transfection, we generated and characterised an induced pluripotent stem cell (iPSC) line from the fibroblasts of a male late-onset DEE patient carrying a heterozygous missense variant (E1211K) in Na1.2(SCN2A) protein.
View Article and Find Full Text PDFencodes Na1.2, an excitatory neuron voltage-gated sodium channel and a major monogenic cause of neurodevelopmental disorders, including developmental and epileptic encephalopathies (DEE) and autism. Clinical presentation and pharmocosensitivity vary with the nature of variant dysfunction and can be divided into gain-of-function (GoF) cases with pre- or peri-natal seizures and loss-of-function (LoF) patients typically having infantile spasms after 6 months of age.
View Article and Find Full Text PDFA range of epilepsies, including the most severe group of developmental and epileptic encephalopathies (DEEs), are caused by gain-of-function variants in voltage-gated channels. Here we report the generation and characterisation of an iPSC cell line from the fibroblasts of a girl with early infantile DEE carrying heterozygous missense gain-of-function mutation (R1882Q) in Na1.2(SCN2A) protein, using transient transfection with a single mRNA molecule.
View Article and Find Full Text PDFAcid-sensing ion channel 1a (ASIC1a) is a proton-activated channel that is expressed ubiquitously throughout the central nervous system and in various types of immune cells. Its role in spinal cord injury (SCI) is controversial; inhibition of ASIC1a has been reported to improve SCI pathology but conversely, gene ablation increased kainite-mediated excitotoxic cell death . Here, we re-examined the role of ASIC1a in a mouse model of SCI.
View Article and Find Full Text PDFDevelopmental and epileptic encephalopathies (DEEs) are characterized by pharmaco-resistant seizures with concomitant intellectual disability. Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the most severe of these syndromes. De novo variants in ion channels, including gain-of-function variants in KCNT1, which encodes for sodium activated potassium channel protein KNa1.
View Article and Find Full Text PDFGenetic variation in voltage-gated sodium (Na) channels is a significant contributor to neurodevelopmental disorders. Na channel alpha subunits are encoded by the SCNxA family and four are predominately expressed in the brain: SCN1A, SCN2A, SCN3A, and SCN8A. Gene expression is developmentally regulated, and they are known to express functionally distinct transcript variants.
View Article and Find Full Text PDFDe novo variation in SCN2A can give rise to severe childhood disorders. Biophysical gain of function in SCN2A is seen in some patients with early seizure onset developmental and epileptic encephalopathy (DEE). In these cases, targeted reduction in SCN2A expression could substantially improve clinical outcomes.
View Article and Find Full Text PDFBackground: KCNC1 encodes Kv3.1, a subunit of the Kv3 voltage-gated potassium channels. It is predominantly expressed in inhibitory GABAergic interneurons and cerebellar neurons.
View Article and Find Full Text PDFBackground: Ischemia-reperfusion injury (IRI) is one of the major risk factors implicated in morbidity and mortality associated with cardiovascular disease. During cardiac ischemia, the buildup of acidic metabolites results in decreased intracellular and extracellular pH, which can reach as low as 6.0 to 6.
View Article and Find Full Text PDFPathogenic variants in HCN1 are associated with developmental and epileptic encephalopathies. The recurrent de novo HCN1 M305L pathogenic variant is associated with severe developmental impairment and drug-resistant epilepsy. We engineered the homologue Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse to explore the disease mechanism underlying an HCN1 developmental and epileptic encephalopathy.
View Article and Find Full Text PDFObjective: We aimed to characterize the phenotypic spectrum and functional consequences associated with variants in the gene GABRB2, coding for the γ-aminobutyric acid type A (GABA ) receptor subunit β2.
Methods: We recruited and systematically evaluated 25 individuals with variants in GABRB2, 17 of whom are newly described and 8 previously reported with additional clinical data. Functional analysis was performed using a Xenopus laevis oocyte model system.
Neurons differentiated from induced pluripotent stem cells (iPSCs) typically show regular spiking and synaptic activity but lack more complex network activity critical for brain development, such as periodic depolarizations including simultaneous involvement of glutamatergic and GABAergic neurotransmission. We generated human iPSC-derived neurons exhibiting spontaneous oscillatory activity after cultivation of up to 6 months, which resembles early oscillations observed in rodent neurons. This behavior was found in neurons generated using a more "native" embryoid body protocol, in contrast to a "fast" protocol based on NGN2 overexpression.
View Article and Find Full Text PDFHyperpolarization-activated cyclic nucleotide-gated (HCN) channels carry a non-selective cationic conductance, I , which is important for modulating neuron excitability. Four genes () encode HCN channels, with each gene having distinct expression and biophysical profiles. Here we use multiplex nucleic acid hybridization to determine HCN4 mRNA expression within the adult mouse brain.
View Article and Find Full Text PDFObjective: To analyze clinical phenotypes associated with KCNC1 variants other than the Progressive Myoclonus Epilepsy-causing variant p.Arg320His, determine the electrophysiological functional impact of identified variants and explore genotype-phenotype-physiological correlations.
Methods: Ten cases with putative pathogenic variants in KCNC1 were studied.
Objective: To elucidate the biophysical basis underlying the distinct and severe clinical presentation in patients with the recurrent missense SCN1A variant, p.Thr226Met. Patients with this variant show a well-defined genotype-phenotype correlation and present with developmental and early infantile epileptic encephalopathy that is far more severe than typical SCN1A Dravet syndrome.
View Article and Find Full Text PDFPurpose Of Review: Recent publications point to an increasingly important role of variants in genes encoding GABAA receptor subunits associated with both common and rare forms of epilepsies. The aim of this review is to give an overview of the current clinical phenotypes, genetic findings and pathophysiological mechanisms related to GABAA receptor variants.
Recent Findings: Early work showed that inherited variants in GABRG2 and GABRA1 cause relatively mild forms of monogenic epilepsies in large families.
Objective: To examine the genotype to phenotype connection in glucose transporter type 1 (GLUT1) deficiency and whether a simple functional assay can predict disease outcome from genetic sequence alone.
Methods: GLUT1 deficiency, due to mutations in , causes a wide range of epilepsies. One possible mechanism for this is variable impact of mutations on GLUT1 function.
Background: Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We aimed to investigate the burden of rare genetic variants in genetic generalised epilepsy.
View Article and Find Full Text PDF