Publications by authors named "Malissen M"

Objective: Immunoglobulin G4-related disease (IgG4-RD) is a systemic inflammatory condition affecting multiple organs, including the pancreas, salivary glands, lungs, kidneys, skin, and lymph nodes. Clinically, it is characterized by elevated serum IgG and IgG4 levels and tissue infiltration by IgG4-positive plasma cells, lymphocytes, fibrosis, and phlebitis obliterans. IgG4-RD is linked to increased Th2-dominant cytokines, contributing to eosinophilia, elevated serum IgG4, and fibrosis.

View Article and Find Full Text PDF

Mice with a loss-of-function mutation in the LAT adaptor (LatY136F) develop an autoimmune and type 2 inflammatory disorder called defective LAT signalosome pathology (DLSP). We analyzed via single-cell omics the trajectory leading to LatY136F DLSP and the underlying CD4+ T cell diversification. T follicular helper cells, CD4+ cytotoxic T cells, activated B cells, and plasma cells were found in LatY136F spleen and lung.

View Article and Find Full Text PDF

The propagation and diversification of signals downstream of the T cell receptor (TCR) involve several adaptor proteins that control the assembly of multimolecular signaling complexes (signalosomes). The global characterization of changes in protein-protein interactions (PPI) following genetic perturbations is critical to understand the resulting phenotypes. Here, by combining genome editing techniques in T cells and interactomics studies based on affinity purification coupled to mass spectrometry (AP-MS) analysis, we determined and quantified the molecular reorganization of the SLP76 interactome resulting from the ablation of each of the three GRB2-family adaptors.

View Article and Find Full Text PDF

Purpose: Lat knock-in mice were recently proposed as an animal model for immunoglobulin G4 (IgG4)-related disease. In this study, we investigated whether Lat knock-in mice exhibit ophthalmic lesions, specifically in the lacrimal and Harderian glands.

Methods: Lacrimal glands, Harderian glands, and adherent lymphoid follicle lesions were dissected from Lat knock-in mice and wild type (WT) C57BL/6 mice between 6 and 24 weeks of age.

View Article and Find Full Text PDF

Schistosomiasis is caused by parasitic flatworms known as schistosomes and affects over 200 million people worldwide. Prevention of T cell exhaustion by blockade of PD-1 results in clinical benefits to cancer patients and clearance of viral infections, however it remains largely unknown whether loss of PD-1 could prevent or cure schistosomiasis in susceptible mice. In this study, we found that S.

View Article and Find Full Text PDF

Functional genomics studies of the immune system require genetic manipulations that involve both deletion of target genes and addition of elements to proteins of interest. Identification of gene functions in cell line models is important for gene discovery and exploration of cell-intrinsic mechanisms. However, genetic manipulations of immune cells such as T cells and macrophage cell lines using CRISPR/Cas9-mediated knock-in are difficult because of the low transfection efficiency of these cells, especially in a quiescent state.

View Article and Find Full Text PDF

Background: Our previous studies reveal that CCL18-CCR8 chemokine axis is upregulated in patients of immunoglobulin G4-related disease (IgG4-RD), suggesting that the CCL18-CCR8 axis is implicated in the etiology of IgG4-RD, although whether this axis has a potential as a therapeutic target remains unclear. Our purpose was to clarify the pathogenic roles and therapeutic potential of the murine CCL8 (analog of human CCL18)-CCR8 axis by using an animal model of IgG4-RD (LAT Y136F knockin mice; LAT mice).

Methods: We compared the infiltration of inflammatory cells and the fibrosis of the salivary glands of 6-week-old LAT mice and littermate mice.

View Article and Find Full Text PDF

Objective: This study examined olfactory dysfunction in LATY136F knock-in mice and its pathogenic mechanism.

Methods: The olfactory function of LATY136F knock-in mice was assessed by a behavioral test using cycloheximide solution, which has been used as a mice repellant because of its peculiar smell and unpleasant taste. The tests were administered to each group of LATY136F knock-in mice and WT mice at 8, 12, 16, 20, and 24 weeks of age.

View Article and Find Full Text PDF
Article Synopsis
  • Natural killer (NK) cells are crucial in fighting leukemia, but their function is hindered by leukemic blasts, leading to the presence of dysfunctional NK cells in acute myeloid leukemia (AML).
  • In a study involving patients with newly diagnosed AML, researchers found a significant accumulation of a specific subset of NK cells (CD56CD16) that resemble those seen in HIV-infected individuals, indicating a potential disruption in their activation and function.
  • A higher percentage of these CD56CD16 NK cells at diagnosis correlated with poorer clinical outcomes, suggesting they might be a marker for immune evasion as AML progresses.
View Article and Find Full Text PDF

T and B cells continually recirculate between blood and secondary lymphoid organs. To promote their trans-endothelial migration (TEM), chemokine receptors control the activity of RHO family small GTPases in part via GTPase-activating proteins (GAPs). T and B cells express several RHO-GAPs, the function of most of which remains unknown.

View Article and Find Full Text PDF

Rationale: Immunoglobulin (Ig) G4-related disease (IgG4-RD) is a novel clinical disease entity characterized by an elevated serum IgG4 concentration and tumefaction or tissue infiltration by IgG4-positive plasma cells. Pathological changes are most frequently seen in the pancreas, lacrimal glands, and salivary glands, but pathological changes in the lung also exist. Linker for activation of T cell (LAT)Y136F knock-in mice show Th2-dominant immunoreactions with elevated serum IgG1 levels, corresponding to human IgG4.

View Article and Find Full Text PDF

To determine the respective contribution of the LAT transmembrane adaptor and CD5 and CD6 transmembrane receptors to early TCR signal propagation, diversification, and termination, we describe a CRISPR/Cas9-based platform that uses primary mouse T cells and permits establishment of the composition of their LAT, CD5, and CD6 signalosomes in only 4 mo using quantitative mass spectrometry. We confirmed that positive and negative functions can be solely assigned to the LAT and CD5 signalosomes, respectively. In contrast, the TCR-inducible CD6 signalosome comprised both positive (SLP-76, ZAP70, VAV1) and negative (UBASH3A/STS-2) regulators of T cell activation.

View Article and Find Full Text PDF

T-cell receptor (TCR) ligation-mediated protein phosphorylation regulates the activation, cellular responses, and fates of T cells. Here, we used time-resolved high-resolution phosphoproteomics to identify, quantify, and characterize the phosphorylation dynamics of thousands of phosphorylation sites in primary T cells during the first 10 min after TCR stimulation. Bioinformatic analysis of the data revealed a coherent orchestration of biological processes underlying T-cell activation.

View Article and Find Full Text PDF

Background: Targeting angiogenesis has been and continues to be an attractive therapeutic modality in glioblastoma (GBM) patients. However, GBM rapidly becomes refractory to anti-VEGF therapies. Myeloid cell infiltration is an important determinant of tumor progression.

View Article and Find Full Text PDF

The activation of T cells by the T cell antigen receptor (TCR) results in the formation of signaling protein complexes (signalosomes), the composition of which has not been analyzed at a systems level. Here, we isolated primary CD4 T cells from 15 gene-targeted mice, each expressing one tagged form of a canonical protein of the TCR-signaling pathway. Using affinity purification coupled with mass spectrometry, we analyzed the composition and dynamics of the signalosomes assembling around each of the tagged proteins over 600 s of TCR engagement.

View Article and Find Full Text PDF

During foam cell formation and atherosclerosis development, the scavenger receptor CD36 plays critical roles in lipid uptake and triggering of atherogenicity via the activation of Vav molecules. The Vav family includes three highly conserved members known as Vav1, Vav2, and Vav3. As Vav1 and Vav3 were found to exert function in atherosclerosis development, it remains thus to decipher whether Vav2 also plays a role in the development of atherosclerosis.

View Article and Find Full Text PDF

Objective: Immunoglobulin (Ig)G4-related disease is a major cause of hypertrophic pachymeningitis (HP), presenting as a progressive thickening of the dura mater. HP lacks an animal model to determine its underlying mechanisms. We developed a suitable animal model for the treatment of HP.

View Article and Find Full Text PDF

In this study, Trypanosoma brucei was naturally transmitted to mice through the bites of infected Glossina morsitans tsetse flies. Neutrophils were recruited rapidly to the bite site, whereas monocytes were attracted more gradually. Expression of inflammatory cytokines (il1b, il6), il10 and neutrophil chemokines (cxcl1, cxcl5) was transiently up-regulated at the site of parasite inoculation.

View Article and Find Full Text PDF

Background: The adaptor protein Linker for activation of T cell (LAT) is a key signaling hub used by the T cell antigen receptor. Mutant mice expressing loss-of-function mutations affecting LAT and including a mutation in which tyrosine 136 is replaced by a phenylalanine (LatY136F) develop lymphoproliferative disorder involving T helper type 2 effector cells capable of triggering a massive polyclonal B cell activation that leads to hypergammaglobulinemia G1 and E and to non-resolving inflammation and autoimmunity. The purpose of this study was to evaluate whether the phenotypes of LatY136F knock-in mice resemble the immunohistopathological features of immunoglobulin G4-related disease (IgG4-RD).

View Article and Find Full Text PDF

Interleukin 17 (IL-17)-producing γδ T cells (γδ17 T cells) have been recently found to promote tumor growth and metastasis formation. How such γδ17 T-cell responses may be regulated in the tumor microenvironment remains, however, largely unknown. Here, we report that tumor-associated neutrophils can display an overt antitumor role by strongly suppressing γδ17 T cells.

View Article and Find Full Text PDF

In both multiple sclerosis and its model experimental autoimmune encephalomyelitis (EAE), the extent of resident microglia activation and infiltration of monocyte-derived cells to the CNS is positively correlated to tissue damage. To address the phenotype characterization of different cell subsets, their spatio-temporal distributions and contributions to disease development we induced EAE in Thy1-CFP//LysM-EGFP//CD11c-EYFP reporter mice. We combined high content flow cytometry, immunofluorescence and two-photon imaging in live mice and identified a stepwise program of inflammatory cells accumulation.

View Article and Find Full Text PDF

Congenital cytomegalovirus (CMV) infections represent one leading cause of neurodevelopmental disorders. Recently, we reported on a rat model of CMV infection of the developing brain , characterized by early and prominent infection and alteration of microglia-the brain-resident mononuclear phagocytes. Besides their canonical function against pathogens, microglia are also pivotal to brain development.

View Article and Find Full Text PDF

Here we describe a new mouse model that exploits the pattern of expression of the high-affinity IgG receptor (CD64) and allows diphtheria toxin (DT)-mediated ablation of tissue-resident macrophages and monocyte-derived cells. We found that the myeloid cells of the ear skin dermis are dominated by DT-sensitive, melanin-laden cells that have been missed in previous studies and correspond to macrophages that have ingested melanosomes from neighboring melanocytes. Those cells have been referred to as melanophages in humans.

View Article and Find Full Text PDF
Article Synopsis
  • ATP6AP2 is a gene that helps make a receptor important for converting a substance in the body, which is why it's a target for new drugs.
  • When scientists turned off this gene in mice, it caused serious problems in different organs, showing it's really important for health.
  • If ATP6AP2 is disrupted in adult mice, they quickly get sick and even die, highlighting that any drugs affecting this gene must be very carefully tested to avoid harm.
View Article and Find Full Text PDF

Rift Valley fever virus (RVFV) leads to varied clinical manifestations in animals and in humans that range from moderate fever to fatal illness, suggesting that host immune responses are important determinants of the disease severity. We investigated the immune basis for the extreme susceptibility of MBT/Pas mice that die with mild to acute hepatitis by day 3 post-infection compared to more resistant BALB/cByJ mice that survive up to a week longer. Lower levels of neutrophils observed in the bone marrow and blood of infected MBT/Pas mice are unlikely to be causative of increased RVFV susceptibility as constitutive neutropenia in specific mutant mice did not change survival outcome.

View Article and Find Full Text PDF