Publications by authors named "Malinin S"

Background: Respiratory sounds have been recognized as a possible indicator of behavior and health. Computer analysis of these sounds can indicate characteristic sound changes caused by COVID-19 and can be used for diagnostics of this illness.

Objective: The aim of the study is to develop 2 fast, remote computer-assisted diagnostic methods for specific acoustic phenomena associated with COVID-19 based on analysis of respiratory sounds.

View Article and Find Full Text PDF

Unlabelled: is to develop a method for detection of pathological respiratory sound, caused by bronchial asthma, with the aid of machine learning techniques.

Materials And Methods: To build and train neural networks, we used the records of respiratory sounds of bronchial asthma patients at different stages of the disease (n=951) aged from several months to 47 years old and healthy volunteers (n=167). The sounds were recorded with calm breathing at four points: at the oral cavity, above the trachea, on the chest (second intercostal space on the right side), and at a point on the back.

View Article and Find Full Text PDF

Effective tight-binding models have been introduced to describe vertical electronic excitations in branched conjugated molecules. The excited-state electronic structure is characterized by quantum particles (excitons) that reside on an irregular lattice (graph) that reflects the molecular structure. The methodology allows for the exciton spectra and energy-dependent exciton scattering matrices to be described in terms of a small number of lattice parameters which can be obtained from quantum-chemical computations using the exciton scattering approach as a tool.

View Article and Find Full Text PDF

The capability of the exciton scattering approach, an efficient methodology for excited states in branched conjugated molecules, is extended to include symmetric triple and quadruple joints that connect linear segments on the basis of the phenylacetylene backbone. The obtained scattering matrices that characterize these vertices are used in application of our approach to several test structures, where we find excellent agreement with the transition energies computed by the reference quantum chemistry. We introduce topological charges, associated with the scattering matrices, which help to formulate useful relations between the number of excitations in the exciton band and the number of repeat units.

View Article and Find Full Text PDF

The electronic excitation energies and transition dipole moments are the essential ingredients to compute an optical spectrum of any molecular system. Here we extend the exciton scattering (ES) approach, originally developed for computing excitation energies in branched conjugated molecules, to the calculation of the transition dipole moments. The ES parameters that characterize contributions of molecular building blocks to the total transition dipole can be extracted from the quantum-chemical calculations of the excited states in simple molecular fragments.

View Article and Find Full Text PDF

We study the transition time distribution for a particle moving between two wells of a multidimensional potential in the low-noise limit of overdamped Langevin dynamics. Possible transition paths are restricted to a thin tube surrounding the most probable trajectory. We demonstrate that finding the transition time distribution reduces to a one-dimensional problem.

View Article and Find Full Text PDF

The exciton scattering (ES) approach is an efficient tool to calculate the excited states electronic structure in large branched polymeric molecules. Using the previously extracted parameters, we apply the ES approach to a number of phenylacetylene-based test molecules. Comparison of ES predictions with direct quantum chemistry results for the excitation energies shows an agreement within several meV.

View Article and Find Full Text PDF

We obtain the parameters of the exciton scattering (ES) model from the quantum-chemical calculations of the electronic excitations in simple phenylacetylene-based molecules. We determine the exciton dispersion and the frequency-dependent scattering matrices which describe scattering properties of the molecular ends as well as of meta- and orthoconjugated links. The extracted functions are smooth, which confirms the validity of the ES picture.

View Article and Find Full Text PDF

We develop a formalism for the exciton scattering (ES) approach to calculation of the excited state electronic structure of branched conjugated polymers with insignificant numerical expense. The ES approach attributes electronic excitations in quasi-one-dimensional molecules to standing waves formed by the scattering of quantum quasiparticles. We derive the phenomenology from the microscopic description in terms of many-electron excitations.

View Article and Find Full Text PDF

The spectrum of a strongly chaotic system consists of discrete complex Ruelle-Pollicott (RP) resonances. We interpret the RP resonances as eigenstates and eigenvalues of the Fokker-Planck operator obtained by adding an infinitesimal diffusion term to the first-order Liouville operator. We demonstrate how the deterministic expression for the linear response is reproduced in the limit of vanishing noise.

View Article and Find Full Text PDF

We develop a general semiquantitative picture of nonlinear classical response in strongly chaotic systems. In contrast to behavior in integrable or almost integrable systems, the nonlinear classical response in chaotic systems vanishes at long times. The exponential decay of the response functions in the case of strong chaos is attributed to both exponentially decaying and growing elements in the stability matrices.

View Article and Find Full Text PDF

The exciton scattering (ES) approach attributes excited electronic states in quasi-1D branched polymer molecules to standing waves of quantum quasiparticles (excitons) scattered at the molecular vertices. We extract their dispersion and frequency-dependent scattering matrices at termini, ortho, and meta joints for pi-conjugated phenylacetylene-based molecules from atomistic time-dependent density-functional theory (TD DFT) calculations. This allows electronic spectra for any structure of arbitrary size within the considered molecular family to be obtained with negligible numerical effort.

View Article and Find Full Text PDF

We establish a general semiquantitative phase-space picture of the classical nonlinear response in a strongly chaotic system. As opposed to the case of stable dynamics, the response functions decay exponentially at long times. Damped oscillations in response functions are attributed to collective resonances which do not correspond to any periodic classical motions.

View Article and Find Full Text PDF

A long one-dimensional wire with a finite density of strong random impurities is modeled as a chain of weakly coupled quantum dots. At low temperature T and applied voltage V its resistance is limited by breaks: randomly occurring clusters of quantum dots with a special length distribution pattern that inhibit the transport. Because of the interplay of interaction and disorder effects the resistance can exhibit T and V dependences that can be approximated by power laws.

View Article and Find Full Text PDF

We discuss the stick-slip motion of an elastic block sliding along a rigid substrate. We argue that for a given external shear stress this system shows a discontinuous nonequilibrium transition from a uniform stick state to uniform sliding at some critical stress which is nothing but the Griffith threshold for crack propagation. An inhomogeneous mode of sliding occurs when the driving velocity is prescribed instead of the external stress.

View Article and Find Full Text PDF

Design principles of holographic optical elements are discussed. It is shown that a phase hologram with a high efficiency can be produced that transforms the input wavefront into an output of the required directivity. Such holograms can be used in laser systems instead of complex multilens objectives.

View Article and Find Full Text PDF