Am J Physiol Renal Physiol
October 2006
Previously, we showed that oxidant exposure in renal proximal tubular cells (RPTC) induces mitochondrial dysfunction mediated by PKC-epsilon. This study examined the role of ERK1/2 in mitochondrial dysfunction induced by oxidant injury and whether PKC-epsilon mediates its effects on mitochondrial function through the Raf-MEK1/2-ERK1/2 pathway. Sublethal injury produced by tert-butylhydroperoxide (TBHP) resulted in three- to fivefold increase in phosphorylation of ERK1/2 and p38 but not JNK.
View Article and Find Full Text PDFPreviously, we showed that physiological functions of renal proximal tubular cells (RPTC) do not recover following S-(1,2-dichlorovinyl)-l-cysteine (DCVC)-induced injury. This study investigated the role of protein kinase C-alpha (PKC-alpha) in the lack of repair of mitochondrial function in DCVC-injured RPTC. After DCVC exposure, basal oxygen consumption (Qo(2)), uncoupled Qo(2), oligomycin-sensitive Qo(2), F(1)F(0)-ATPase activity, and ATP production decreased, respectively, to 59, 27, 27, 57, and 68% of controls.
View Article and Find Full Text PDF