Background: Forestry and land-use change are leading causes of habitat loss, degradation, and fragmentation worldwide. The boreal forest biome is no exception, and only a small proportion of this forest type remains intact. Since forestry will remain a major land-use in this region, measures must be taken to ensure forest dependent biodiversity.
View Article and Find Full Text PDFSelection leading to adaptation to interactions may generate rapid evolutionary feedbacks and drive diversification of species interactions. The challenge is to understand how the many traits of interacting species combine to shape local adaptation in ways directly or indirectly resulting in diversification. We used the well-studied interactions between Lithophragma plants (Saxifragaceae) and Greya moths (Prodoxidae) to evaluate how plants and moths together contributed to local divergence in pollination efficacy.
View Article and Find Full Text PDFBackground: Silviculture and land-use change has reduced the amount of natural forest worldwide and left what remains confined to isolated fragments or stands. To understand processes governing species occurrence in such stands, much attention has been given to stand-level factors such as size, structure, and deadwood amount. However, the surrounding matrix will directly impact species dispersal and persistence, and the link between the surrounding landscape configuration, composition and history, and stand-level species occurrence has received insufficient attention.
View Article and Find Full Text PDF