Publications by authors named "Malin Sandberg"

Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, is thought to occur when the cellular prion protein (PrP) spontaneously misfolds and assembles into prion fibrils, culminating in fatal neurodegeneration. In a genome-wide association study of sCJD, we recently identified risk variants in and around the gene STX6, with evidence to suggest a causal increase of STX6 expression in disease-relevant brain regions. STX6 encodes syntaxin-6, a SNARE protein primarily involved in early endosome to trans-Golgi network retrograde transport.

View Article and Find Full Text PDF

Chronic wasting disease (CWD) is the transmissible spongiform encephalopathy or prion disease affecting cervids. In 2016, the first cases of CWD were reported in Europe in Norwegian wild reindeer and moose. The origin and zoonotic potential of these new prion isolates remain unknown.

View Article and Find Full Text PDF

Prions are infectious agents which cause rapidly lethal neurodegenerative diseases in humans and animals following long, clinically silent incubation periods. They are composed of multichain assemblies of misfolded cellular prion protein. While it has long been assumed that prions are themselves neurotoxic, recent development of methods to obtain exceptionally pure prions from mouse brain with maintained strain characteristics, and in which defined structures-paired rod-like double helical fibers-can be definitively correlated with infectivity, allowed a direct test of this assertion.

View Article and Find Full Text PDF

Hereditary angioedema (HAE) is a rare genetic disorder characterised by recurrent swellings involving subcutaneous and submucosal tissue that can be potentially life threatening in cases involving the upper airway. In this case report, we present a Syrian refugee family with HAE who have lived in Denmark since 2014. The index patient is an 8-year-old girl diagnosed with HAE after being hospitalised in Denmark with an angioedema attack.

View Article and Find Full Text PDF

Prenatal dexamethasone (DEX) treatment in congenital adrenal hyperplasia (CAH) is effective in reducing virilization in affected girls, but potential long-term adverse effects are largely unknown. In this report we intended to explore potential side effects of DEX therapy to enhance the adequacy of future risk benefit analyses of DEX treatment. We investigated the long-term effects of first trimester prenatal DEX treatment on behavioral problems and temperament in children and adolescents aged 7-17 years.

View Article and Find Full Text PDF

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).

View Article and Find Full Text PDF
Article Synopsis
  • The protein-only hypothesis suggests that infectious prions are misfolded cellular prion proteins (PrPs) that form distinct strains with unique biological properties.
  • Researchers aim to synthesize prions from known components to study infectivity and strain diversity at the atomic level, but achieving high-titre synthetic prions suitable for analysis remains challenging.
  • In a study, the team tested around 20,000 conditions to produce these synthetic prions from recombinant mouse PrP, but found that infectious results were transient and largely non-reproducible, indicating that creating prions from recombinant sources may require more understanding of the structure of natural prions.
View Article and Find Full Text PDF

The self-association of prion protein (PrP) is a critical step in the pathology of prion diseases. It is increasingly recognized that small non-fibrillar β-sheet-rich oligomers of PrP may be of crucial importance in the prion disease process. Here, we characterize the structure of a well defined β-sheet-rich oligomer, containing ∼12 PrP molecules, and often enclosing a central cavity, formed using full-length recombinant PrP.

View Article and Find Full Text PDF

Prions are lethal infectious agents thought to consist of multi-chain forms (PrP(Sc)) of misfolded cellular prion protein (PrP(C)). Prion propagation proceeds in two distinct mechanistic phases: an exponential phase 1, which rapidly reaches a fixed level of infectivity irrespective of PrP(C) expression level, and a plateau (phase 2), which continues until clinical onset with duration inversely proportional to PrP(C) expression level. We hypothesized that neurotoxicity relates to distinct neurotoxic species produced following a pathway switch when prion levels saturate.

View Article and Find Full Text PDF

Background: Human prion diseases, although variable in clinicopathological phenotype, generally present as neurologic or neuropsychiatric conditions associated with rapid multifocal central nervous system degeneration that is usually dominated by dementia and cerebellar ataxia. Approximately 15% of cases of recognized prion disease are inherited and associated with coding mutations in the gene encoding prion protein (PRNP). The availability of genetic diagnosis has led to a progressive broadening of the recognized spectrum of disease.

View Article and Find Full Text PDF

Mammalian prions cause fatal neurodegenerative conditions including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. Prion infections are typically associated with remarkably prolonged but highly consistent incubation periods followed by a rapid clinical phase. The relationship between prion propagation, generation of neurotoxic species and clinical onset has remained obscure.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic wasting disease (CWD) is a prion disease affecting deer species and has been found in various locations, raising concerns about its potential zoonotic transmission to humans, particularly among hunters.
  • Researchers tested if CWD-infected mule deer could transmit prions to specially designed mice that resemble human prion protein makeup, but found these mice were resistant to infection from CWD prions.
  • This suggests a stronger transmission barrier for CWD compared to classical BSE prions, but further research is needed to explore the characteristics and risks of different prion strains in cervids.
View Article and Find Full Text PDF

Otic ganglionectomy in rats was found to have affected the parotid gland more profoundly than section of the auriculotemporal nerve as assessed by reduction in gland weight (by 33 versus 20%) and total acetylcholine synthesizing capacity (by 88 versus 76%) 1 week postoperatively and, when assessed on the day of surgery under adrenoceptor blockade, by reflex secretion (by 99 versus 88%). The facial nerve contributed to the acetylcholine synthesizing capacity of the gland. Section of the nerve only, at the level of the stylomastoid foramen, reduced the acetylcholine synthesis by 15% and, combined with otic ganglionectomy, by 98% or, combined with section of the auriculotemporal nerve, by 82%.

View Article and Find Full Text PDF

Prions cause transmissible and fatal diseases that are associated with spongiform degeneration, astrogliosis, and loss of axon terminals in the brains. To determine the expression of proteins involved in neurosecretion and synaptic functions after prion infection, gonadotropin-releasing hormone neuronal cell line subclone (GT1-1) was infected with the RML scrapie strain and analyzed by Western blotting, real time PCR, and immunohistochemistry. As revealed by Western blotting of lysates exposed to different temperatures, the levels of complexed SNAP-25, syntaxin 1A, and synaptophysin were decreased in scrapie-infected GT1-1 cells (ScGT1-1), whereas the level of monomeric forms of these proteins was increased and correlated to the level of scrapie prion protein (PrPSc).

View Article and Find Full Text PDF

Prions are transmissible pathogens that cause neurodegenerative diseases, although the mechanisms behind the nervous system dysfunctions are unclear. To study the effects of a prion infection on voltage-gated calcium channels, scrapie-infected gonadotropin-releasing hormone neuronal cells (ScGT1-1) in culture were depolarized by KCl and calcium responses recorded. Lower calcium responses were observed in infected compared to uninfected cells.

View Article and Find Full Text PDF