The ability to finely control the surface plasmon polariton (SPP) modes of plasmonic waveguides unveils many potential applications in nanophotonics. This work presents a comprehensive theoretical framework for predicting the propagation characteristics of SPP modes at a Schottky junction exposed to a dressing electromagnetic field. Applying the general linear response theory towards a periodically driven many-body quantum system, we obtain an explicit expression for the dielectric function of the dressed metal.
View Article and Find Full Text PDFChiral metallic nanoparticles can exhibit novel plasmonic circular dichroism (PCD) in the ultraviolet and visible range of the electromagnetic spectrum. Here, we investigate how thermoresponsive dielectric nanoenvironments will influence such PCD responses through poly(-isopropylacrylamide) (PNIPAM) modified chiral gold nanorods (AuNRs). We observed the temperature-dependent chiral plasmonic responses distinctly from unmodified counterparts.
View Article and Find Full Text PDFPlasmonic radial breathing mode (RBM), featured with radially oscillating charge density, arises from the surface plasmon waves confined in the flat nanoparticles. The zero net dipole moment endows the RBM with an extremely low radiation yet a remarkable intense local field. On the other hand, owing to the dark mode nature, the RBMs routinely escape from the optical measurements, severely preventing their applications in optoelectronics and nanophotonics.
View Article and Find Full Text PDFMie-Gans theory optically characterizes ellipsoidal and by extension generally elongated nonchiral metal nanoparticles (MNPs) and is ubiquitous in verifying experimental results and predicting particle behavior. Recently, elongated chiral MNPs have garnered enthusiasm, but a theory to characterize their chiroptical behavior is lacking in the literature. In this Letter, we present an model for chiral ellipsoidal MNPs to address this shortcoming and demonstrate that it reduces to the general Mie-Gans model under nonchiral conditions, produces results that concur with state-of-the-art numerical simulations, and can accurately replicate recent experimental measurements.
View Article and Find Full Text PDFUnderstanding how the living human brain functions requires sophisticated in vivo neuroimaging technologies to characterise the complexity of neuroanatomy, neural function, and brain metabolism. Fluorodeoxyglucose positron emission tomography (FDG-PET) studies of human brain function have historically been limited in their capacity to measure dynamic neural activity. Simultaneous [18 F]-FDG-PET and functional magnetic resonance imaging (fMRI) with FDG infusion protocols enable examination of dynamic changes in cerebral glucose metabolism simultaneously with dynamic changes in blood oxygenation.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2021
Achieving directional exciton energy transport can revolutionize a plethora of applications that depend on exciton energy transfer. In this study, we theoretically analyse a system that comprises a collection of chiral quantum emitters placed in a plasmonic setup made up of a metal nanoparticle trimer. We investigate the system by pumping left and right circularly polarized photons to excite the system.
View Article and Find Full Text PDFJ Phys Condens Matter
May 2021
We design a tunable plasmonic resonator that may have applications in sensing and plasmon generation-our design uses graphene-based Bragg reflectors of periodically modulated conductivity. Specifically, we explore and utilize the ability to use an array of Gaussian conductivity gratings as fully reflecting mirrors for surface plasmon polaritons (SPPs) propagating along a two-dimensional graphene sheet sandwiched between two dielectric materials. Graphene supports SPPs in the near-infrared to terahertz (THz) regime of the electromagnetic spectrum compared to those observed in metal-dielectric systems.
View Article and Find Full Text PDFElectronic excitation energy transfer is a ubiquitous process that has generated prime research interest since its discovery. Recently developed variational polaron transformation-based second-order master equation is capable of interpolating between Förster and Redfield limits with exceptional accuracy. Forms of spectral density functions studied so far through the variational approach provide theoretical support for various experiments.
View Article and Find Full Text PDFSkin-like optoelectronic sensors can have a wide range of technical applications ranging from wearable/implantable biodiagnostics, human-machine interfaces, and soft robotics to artificial intelligence. The previous focus has been on electrical signal transduction, whether resistive, capacitive, or piezoelectric. Here, we report on "optical skin" strain sensors based on elastomer-supported, highly ordered, and closely packed plasmonic nanocrystal arrays (plasmene).
View Article and Find Full Text PDFSimultaneous [18 F]-fluorodeoxyglucose positron emission tomography and functional magnetic resonance imaging (FDG-PET/fMRI) provides the capability to image two sources of energetic dynamics in the brain - cerebral glucose uptake and the cerebrovascular haemodynamic response. Resting-state fMRI connectivity has been enormously useful for characterising interactions between distributed brain regions in humans. Metabolic connectivity has recently emerged as a complementary measure to investigate brain network dynamics.
View Article and Find Full Text PDFJ Phys Condens Matter
August 2020
Trapping and manipulating micro-size particles using optical tweezers has contributed to many breakthroughs in biology, materials science, and colloidal physics. However, it remains challenging to extend this technique to a few nanometers particles owing to the diffraction limit and the considerable Brownian motion of trapped nanoparticles. In this work, a nanometric optical tweezer is proposed by using a plasmonic nanocavity composed of the closely spaced silver coated fiber tip and gold film.
View Article and Find Full Text PDFFunctional positron emission tomography (fPET) is a neuroimaging method involving continuous infusion of 18-F-fluorodeoxyglucose (FDG) radiotracer during the course of a PET examination. Compared with the conventional bolus administration of FDG in a static PET scan, which provides an average glucose uptake into the brain over an extended period of up to 30 min, fPET offers a significantly higher temporal resolution to study the dynamics of glucose uptake. Several earlier studies have applied fPET to investigate brain FDG uptake and study its relationship with functional magnetic resonance imaging (fMRI).
View Article and Find Full Text PDFWe investigated the optical binding force in a plasmonic heterodimer structure consisting of two nano-disks. It is found that when illuminated by a tightly focused radially polarized beam (RPB), the plasmon modes of the two nano-disks are strongly hybridized, forming bonding/antibonding modes. An interesting observation of this setup is that the direction of the optical binding force can be controlled by changing the wavelength of illumination, the location of the dimer, the diameter of the nano-disks, and the dimer gap size.
View Article and Find Full Text PDFWe investigate a system comprised of a constellation quantum emitters interacting with a localized surface plasmon mode of a metal nanoparticle subject to an externally applied electrostatic field. Due to the strong interactions among the electric field and the plasmonic setup, we show that system enters collective strong coupling regime generating polariton states when the intensity of the applied electrostatic field is increased. This in turn enhances the exciton energy transport rates between two emitters in the system when a single emitter is incoherently pumped.
View Article and Find Full Text PDFJ Phys Condens Matter
February 2020
Förster resonance energy transfer (FRET) is an important physical phenomenon which demands precise control over the FRET rate for its wide range of applications. Hence, enhancing the FRET rate using different techniques has been extensively studied in the literature. Research indicates that introducing additional particles to a system consisting of a donor-acceptor pair can change the behaviour of FRET in the system.
View Article and Find Full Text PDFThe temperature-dependent optical properties of gold nanoparticles that are capped with the thermo-sensitive polymer: 'poly(N-isopropylacrylamide)' (PNIPAM), have been studied extensively for several years. Also, their suitability to function as nanoscopic thermometers for bio-sensing applications has been suggested numerous times. In an attempt to establish this, many have studied the temperature-dependent optical resonance characteristics of these particles; however, developing a simple mathematical relationship between the optical measurements and the solution temperature remains an open challenge.
View Article and Find Full Text PDFBoosting the nonlinear conversion rate in nanoscale is pivotal for practical applications such as highly sensitive biosensors, extreme ultra-violate light sources, and frequency combs. Here, we theoretically study the enhancement of second-harmonic generation (SHG) in a plasmonic trimer assisted by breathing modes. The geometry of the trimer is fine-tuned to produce strong plasmonic resonances at both the fundamental and SH wavelengths to boost SHG intensity.
View Article and Find Full Text PDFMetal nanoparticles (MNPs) possess optical concentration capabilities that can amplify and localize electromagnetic fields into nanometer length scales. The near-fields of MNPs can be used to tailor optical response of luminescent semiconductor quantum dots (QDs), resulting in fascinating optical phenomena. Plasmonic metaresonances (PMRs) form a class of such optical events gaining increasing popularity due to their promising prospects in sensing and switching applications.
View Article and Find Full Text PDFMetallic hexamer, very much the plasmonic analog of benzene molecule, provides an ideal platform to mimic modes coupling and hybridization in molecular systems. To demonstrate this, we present a detailed study on radial breathing mode (RBM) coupling in a plasmonic dual-hexamers. We excite RBMs of hexamers by symmetrically matching the polarization state of the illumination with the distribution of electric dipole moments of the dual-hexamer.
View Article and Find Full Text PDFWe propose a scheme to extend the measuring range of a transverse displacement sensor by exploiting the interaction of an azimuthally polarized beam (APB) with a single metal-dielectric core-shell nanoparticle. The focused APB illumination induces a longitudinal magnetic dipole (MD) in the core-shell nanoparticle, which interferes with the induced transverse electric dipole (ED) to bring forth a transverse unidirectional scattering at a specific position within the focal plane. Emphatically, the rapidly varying electromagnetic field within the focal plane of an APB leads to a remarkable sensitivity of the far-field scattering directivity to nanoscale displacements as the nanoparticle moves away from the optical axis.
View Article and Find Full Text PDFA hybrid nanostructure where a graphene nanoflake (GNF) is optically coupled to a carbon nanotube (CNT) could potentially possess enhanced sensing capabilities compared to the individual constituents whilst inheriting their high biocompatibility, favourable electrical, mechanical and spectroscopic properties. Therefore, in this paper, we investigate the scattering characteristics of an all-carbon exciton-plasmon nanohybrid which was made by coupling an elliptical GNF resonator to a semiconducting CNT gain element. We analytically model the nanohybrid as an open quantum system using cavity quantum electrodynamics.
View Article and Find Full Text PDFWe demonstrate that a highly localized plasmonic dark mode with radial symmetry, termed quadrupole-bonded radial breathing mode, can be used for optically trapping the dielectric nanoparticles. In particular, the annular potential well produced by this dark mode shows a sufficiently large depth to stably trap the 5 nm particles under a relatively low optical power. Our results address the quest for precisely trapping sub-10 nm particles with high yield and pave the way for placing sub-10 nm particles conforming to a specific geometric pattern.
View Article and Find Full Text PDFThe electronic, optical, thermal, and magnetic properties of an extrinsic bulk semiconductor can be finely tuned by adjusting its dopant concentration. Here, it is demonstrated that such a doping concept can be extended to plasmonic nanomaterials. Using two-dimensional (2D) assemblies of Au@Ag and Au nanocubes (NCs) as a model system, detailed experimental and theoretical studies are carried out, which reveal collective semiconductor n/p-doping-like plasmonic properties.
View Article and Find Full Text PDFElectroconvulsive therapy (ECT) is an effective treatment option for severe mental illness during pregnancy. However, there is little knowledge about the amount of electric field produced inside the foetus, which is important to understand the effects of ECT on the foetal excitable tissues. Thus, in this paper, the electric field strength inside the foetus was computed and compared to the basic restriction of the International Commission for Non-Ionizing Radiation Protection (ICNIRP).
View Article and Find Full Text PDFA subwavelength water metamaterial is proposed and analyzed for ultra-broadband perfect absorption at microwave frequencies. We experimentally demonstrate that this metamaterial shows over 90% absorption within almost the entire frequency band of 12-29.6 GHz.
View Article and Find Full Text PDF