Antibodies that preferentially and specifically target pathological oligomeric protein and peptide assemblies, as opposed to their monomeric and amyloid counterparts, provide therapeutic and diagnostic opportunities for protein misfolding diseases. Unfortunately, the molecular properties associated with oligomer-specific antibodies are not well understood, and this limits targeted design and development. We present here a generic method that enables the design and optimisation of oligomer-specific antibodies.
View Article and Find Full Text PDFIdentifying factors that affect the self-assembly of Aβ (amyloid-β peptide) is of utmost importance in the quest to understand the molecular mechanisms causing AD (Alzheimer's disease). Ca(2+) has previously been shown to accelerate both Aβ fibril nucleation and maturation, and dysregulated Ca(2+) homoeostasis frequently correlates with development of AD. The mechanisms regarding Ca(2+) binding, as well as its effect on fibril kinetics, are not fully understood.
View Article and Find Full Text PDFAβ (beta-amyloid peptide) is an important contributor to Alzheimer's disease (AD). We modeled Aβ toxicity in yeast by directing the peptide to the secretory pathway. A genome-wide screen for toxicity modifiers identified the yeast homolog of phosphatidylinositol binding clathrin assembly protein (PICALM) and other endocytic factors connected to AD whose relationship to Aβ was previously unknown.
View Article and Find Full Text PDFBackground: Alzheimers disease (AD) has been strongly linked to an anomalous self-assembly of the amyloid-β peptide (Aβ). The correlation between clinical symptoms of AD and Aβ depositions is, however, weak. Instead small and soluble Aβ oligomers are suggested to exert the major pathological effects.
View Article and Find Full Text PDFAlzheimer's disease, a neurodegenerative disorder causing synaptic impairment and neuronal cell death, is strongly correlated with aggregation of the amyloid-beta peptide (Abeta). Divalent metal ions such as Cu(2+) and Zn(2+) are known to significantly affect the rate of aggregation and morphology of Abeta assemblies in vitro and are also found at elevated levels within cerebral plaques in vivo. The present investigation characterized the architecture of the aggregated forms of Abeta(1-40) and Abeta(1-42) in the presence or absence of either Cu(2+) or Zn(2+) using quenched hydrogen/deuterium exchange combined with solution NMR spectroscopy.
View Article and Find Full Text PDFAD (Alzheimer's disease) is a neurodegenerative disorder characterized by self-assembly and amyloid formation of the 39-43 residue long Abeta (amyloid-beta)-peptide. The most abundant species, Abeta(1-40) and Abeta(1-42), are both present within senile plaques, but Abeta(1-42) peptides are considerably more prone to self-aggregation and are also essential for the development of AD. To understand the molecular and pathological mechanisms behind AD, a detailed knowledge of the amyloid structures of Abeta-peptides is vital.
View Article and Find Full Text PDFBackground: The mechanisms by which castration induces prostate involution are largely unknown.
Methods: Early responses to castration in mouse ventral prostate (VP) were explored by quantitative microscopy, cDNA array expression, quantitative RT-PCR, and Western blot analysis. As several changes occurred in the insulin-like growth factor (IGF) system this was studied in more detail.