Steatotic liver disease has been shown to associate with cardiovascular disease independently of other risk factors. Lipoproteins have been shown to mediate some of this relationship but there remains unexplained variance. Here we investigate the plasma lipidomic changes associated with liver steatosis and the mediating effect of these lipids on coronary artery disease (CAD).
View Article and Find Full Text PDFStimulation of the alpha 7 nicotinic acetylcholine receptor (α7nAChR) has shown beneficial effects in several acute inflammatory disease models. This study aims to examine whether treatment with the selective α7nAChR agonist PHA 568487 can dampen inflammation and thereby improve cardiac function after myocardial infarction in mice. The possible anti-inflammatory properties of α7nAChR agonist PHA 568487 were tested in vivo using the air pouch model and in a permanent occlusion model of acute myocardial infarction in mice.
View Article and Find Full Text PDFOxidative stress is the imbalance between the production of reactive oxygen species (ROS) and antioxidants in a cell. In the heart, oxidative stress may deteriorate calcium handling, cause arrhythmia, and enhance maladaptive cardiac remodeling by the induction of hypertrophic and apoptotic signaling pathways. Consequently, dysregulated ROS production and oxidative stress have been implicated in numerous cardiac diseases, including heart failure, cardiac ischemia-reperfusion injury, cardiac hypertrophy, and diabetic cardiomyopathy.
View Article and Find Full Text PDFPurpose Of Review: Sphingolipids are structurally diverse membrane lipids localized in lipid bilayers. Sphingolipids are not only important structural components of cellular membranes, but they are also important regulators of cellular trafficking and signal transduction and are implicated in several diseases. Here, we review the latest insights into sphingolipids and their role in cardiac function and cardiometabolic disease.
View Article and Find Full Text PDFAims: Pro-protein convertase subtilisin-kexin type 9 (PCSK9), which is expressed mainly in the liver and at low levels in the heart, regulates cholesterol levels by directing low-density lipoprotein receptors to degradation. Studies to determine the role of PCSK9 in the heart are complicated by the close link between cardiac function and systemic lipid metabolism. Here, we sought to elucidate the function of PCSK9 specifically in the heart by generating and analysing mice with cardiomyocyte-specific Pcsk9 deficiency (CM-Pcsk9-/- mice) and by silencing Pcsk9 acutely in a cell culture model of adult cardiomyocyte-like cells.
View Article and Find Full Text PDFThe adult heart develops hypertrophy to reduce ventricular wall stress and maintain cardiac function in response to an increased workload. Although pathological hypertrophy generally progresses to heart failure, physiological hypertrophy may be cardioprotective. Cardiac-specific overexpression of the lipid-droplet protein perilipin 5 (Plin5) promotes cardiac hypertrophy, but it is unclear whether this response is beneficial.
View Article and Find Full Text PDFBackground: Patients with familial hypercholesterolemia (FH) display high levels of low-density lipoprotein cholesterol (LDL-c), endothelial dysfunction, and increased risk of premature atherosclerosis. We have previously shown that red blood cells (RBCs) from patients with type 2 diabetes induce endothelial dysfunction through increased arginase 1 and reactive oxygen species (ROS).
Objective: To test the hypothesis that RBCs from patients with FH (FH-RBCs) and elevated LDL-c induce endothelial dysfunction.
Androgen deprivation therapy of prostate cancer, which suppresses serum testosterone to castrate levels, is associated with increased risk of heart failure. Here we tested the hypothesis that castration alters cardiac energy substrate uptake, which is tightly coupled to the regulation of cardiac structure and function. Short-term (3-4 weeks) surgical castration of male mice reduced the relative heart weight.
View Article and Find Full Text PDFBackground: The initiating step in atherogenesis is the electrostatic binding of LDL (low-density lipoprotein) to proteoglycan glycosaminoglycans in the arterial intima. However, although proteoglycans are widespread throughout the intima of most coronary artery segments, LDL is not evenly distributed, indicating that LDL retention is not merely dependent on the presence of proteoglycans. We aim to identify factors that promote the interaction between LDL and the vessel wall of human coronary arteries.
View Article and Find Full Text PDFAims: Takotsubo syndrome (TTS) is an acute potentially reversible cardiac syndrome characterized by variable regional myocardial akinesia that cannot be attributed to a culprit coronary artery occlusion. TTS is an important differential diagnosis of acute heart failure where brain natriuretic peptides are elevated. Sacubitril/valsartan is a novel and effective pharmacological agent for the treatment of patients with heart failure.
View Article and Find Full Text PDFAngiogenesis supplies oxygen and nutrients to growing tumors. Inhibiting angiogenesis may stop tumor growth, but vascular endothelial growth factor inhibitors have limited effect in most tumors. This limited effect may be explained by an additional, less vascular endothelial growth factor-driven form of angiogenesis known as intussusceptive angiogenesis.
View Article and Find Full Text PDFBrown adipose tissue (BAT) burns substantial amounts of mainly lipids to produce heat. Some studies indicate that BAT activity and core body temperature are lower in males than females. Here we investigated the role of testosterone and its receptor (the androgen receptor; AR) in metabolic BAT activity in male mice.
View Article and Find Full Text PDFAims: Cardiac injury and remodelling are associated with the rearrangement of cardiac lipids. Glycosphingolipids are membrane lipids that are important for cellular structure and function, and cardiac dysfunction is a characteristic of rare monogenic diseases with defects in glycosphingolipid synthesis and turnover. However, it is not known how cardiac glycosphingolipids regulate cellular processes in the heart.
View Article and Find Full Text PDFWe report a case of rapid eradication of melanoma brain metastases and simultaneous near-fatal encephalomyelitis following double immune checkpoint blockade. Brain damage marker S-100B and C reactive protein increased before symptoms or signs of encephalomyelitis and peaked when the patient fell into a coma. At that point, additional brain damage markers and peripheral T cell phenotype was analyzed.
View Article and Find Full Text PDFMyocardial infarction (MI) promotes a range of systemic effects, many of which are unknown. Here, we investigated the alterations associated with MI progression in heart and other metabolically active tissues (liver, skeletal muscle, and adipose) in a mouse model of MI (induced by ligating the left ascending coronary artery) and sham-operated mice. We performed a genome-wide transcriptomic analysis on tissue samples obtained 6- and 24 hr post MI or sham operation.
View Article and Find Full Text PDFAcute myocardial infarction (MI) is a cardiovascular disease that remains a major cause of morbidity and mortality worldwide despite advances in its prevention and treatment. During acute myocardial ischemia, the lack of oxygen switches the cell metabolism to anaerobic respiration, with lactate accumulation, ATP depletion, Na and Ca overload, and inhibition of myocardial contractile function, which drastically modifies the lipid, protein, and small metabolite profile in the myocardium. Imaging mass spectrometry (IMS) is a powerful technique to comprehensively elucidate the spatial distribution patterns of lipids, peptides, and proteins in biological tissue sections.
View Article and Find Full Text PDFBackground: Type 2 diabetes is a major health problem in the world, and is strongly associated with impaired cardiac function and increased mortality. The causal relationship between type 2 diabetes and impaired cardiac function is still incompletely understood but changes in the cardiac lipid metabolism are believed to be a contributing factor. The objective of this study was to determine the lipid profile in human myocardial biopsies collected in vivo from patients with type 2 diabetes and compare to non-diabetic controls.
View Article and Find Full Text PDFAim: The acute phase of myocardial infarction (MI) is accompanied by edema contributing to tissue damage and disease outcome. Here, we aimed to identify the mechanism whereby vascular endothelial growth factor (VEGF)-A induces myocardial edema in the acute phase of MI to eventually promote development of therapeutics to specifically suppress VEGFA-regulated vascular permeability while preserving collateral vessel formation.
Methods And Results: VEGFA regulates vascular permeability and edema by activation of VEGF receptor-2 (VEGFR2), leading to induction of several signaling pathways including the cytoplasmic tyrosine kinase c-Src.
Aims: The microsomal triglyceride transport protein (MTTP) is critical for assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins and is most abundant in the liver and intestine. Surprisingly, MTTP is also expressed in the heart. Here we tested the functional relevance of cardiac MTTP expression.
View Article and Find Full Text PDFMyocardial dysfunction is commonly associated with accumulation of cardiac lipid droplets (LDs). Perilipin 2 (Plin2) is a LD protein that is involved in LD formation, stability and trafficking events within the cell. Even though Plin2 is highly expressed in the heart, little is known about its role in myocardial lipid storage.
View Article and Find Full Text PDFEndothelial expression of tissue-type plasminogen activator (t-PA) is crucial for maintaining an adequate endogenous fibrinolysis. It is unknown how endothelial t-PA expression and fibrinolysis are affected by blood flow in vivo. In this study, we investigated the impact of different blood flow profiles on endothelial t-PA expression and fibrinolysis in the arterial vasculature.
View Article and Find Full Text PDFThe aim was to clarify the role of vimentin, an intermediate filament protein abundantly expressed in activated macrophages and foam cells, in macrophages during atherogenesis. Global gene expression, lipid uptake, ROS, and inflammation were analyzed in bone-marrow derived macrophages from vimentin-deficient (Vim) and wild-type (Vim) mice. Atherosclerosis was induced in Ldlr mice transplanted with Vim and Vim bone marrow, and in Vim and Vim mice injected with a PCSK9 gain-of-function virus.
View Article and Find Full Text PDFEndothelial injury makes the vessel wall vulnerable to cardiovascular diseases. Injured endothelium regenerates by collective sheet migration, that is, the endothelial cells coordinate their motion and regrow as a sheet of cells with retained cell-cell contacts into the wounded area. Leukocytes appear to be involved in endothelial repair in vivo; however, little is known about their identity and role in the reparative sheet migration process.
View Article and Find Full Text PDFToll-like receptor 4 (TLR4) is activated by bacterial lipopolysaccharide (LPS), which drives the production of proinflammatory cytokines. Earlier studies have indicated that cholesterol- and glycosphingolipid-rich subregions of the plasma membrane (lipid domains) are important for TLR4-mediated signaling. We report that inhibition of glucosylceramide (GluCer) synthase, which resulted in decreased concentrations of the glycosphingolipid GluCer in lipid domains, reduced the LPS-induced inflammatory response in both mouse and human macrophages.
View Article and Find Full Text PDFMyocardial triglycerides stored in lipid droplets are important in regulating the intracellular delivery of fatty acids for energy generation in mitochondria, for membrane biosynthesis, and as agonists for intracellular signaling. Previously, we showed that deficiency in the lipid droplet protein perilipin 5 (Plin5) markedly reduces triglyceride storage in cardiomyocytes and increases the flux of fatty acids into phospholipids. Here, we investigated whether Plin5 deficiency in cardiomyocytes alters mitochondrial function.
View Article and Find Full Text PDF