Despite the profound impacts of scientific research, few scientists have received the necessary training to productively discuss the ethical and societal implications of their work. To address this critical gap, we-a group of predominantly human genetics trainees-developed a course on genetics, ethics, and society. We intend for this course to serve as a template for other institutions and scientific disciplines.
View Article and Find Full Text PDFHuman inborn errors of immunity include rare disorders entailing functional and quantitative antibody deficiencies due to impaired B cells called the common variable immunodeficiency (CVID) phenotype. Patients with CVID face delayed diagnoses and treatments for 5 to 15 years after symptom onset because the disorders are rare (prevalence of ~1/25,000), and there is extensive heterogeneity in CVID phenotypes, ranging from infections to autoimmunity to inflammatory conditions, overlapping with other more common disorders. The prolonged diagnostic odyssey drives excessive system-wide costs before diagnosis.
View Article and Find Full Text PDFBackground: Large medical centers in urban areas, like Los Angeles, care for a diverse patient population and offer the potential to study the interplay between genetic ancestry and social determinants of health. Here, we explore the implications of genetic ancestry within the University of California, Los Angeles (UCLA) ATLAS Community Health Initiative-an ancestrally diverse biobank of genomic data linked with de-identified electronic health records (EHRs) of UCLA Health patients (N=36,736).
Methods: We quantify the extensive continental and subcontinental genetic diversity within the ATLAS data through principal component analysis, identity-by-descent, and genetic admixture.
Genome-wide association studies (GWASs) have identified more than 200 prostate cancer (PrCa) risk regions, which provide potential insights into causal mechanisms. Multiple lines of evidence show that a significant proportion of PrCa risk can be explained by germline causal variants that dysregulate nearby target genes in prostate-relevant tissues, thus altering disease risk. The traditional approach to explore this hypothesis has been correlating GWAS variants with steady-state transcript levels, referred to as expression quantitative trait loci (eQTLs).
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) has exposed health care disparities in minority groups including Hispanics/Latinxs (HL). Studies of COVID-19 risk factors for HL have relied on county-level data. We investigated COVID-19 risk factors in HL using individual-level, electronic health records in a Los Angeles health system between March 9, 2020, and August 31, 2020.
View Article and Find Full Text PDFWith the continuing coronavirus disease 2019 (COVID-19) pandemic coupled with phased reopening, it is critical to identify risk factors associated with susceptibility and severity of disease in a diverse population to help shape government policies, guide clinical decision making, and prioritize future COVID-19 research. In this retrospective case-control study, we used de-identified electronic health records (EHR) from the University of California Los Angeles (UCLA) Health System between March 9, 2020 and June 14, 2020 to identify risk factors for COVID-19 susceptibility (severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) PCR test positive), inpatient admission, and severe outcomes (treatment in an intensive care unit or intubation). Of the 26,602 individuals tested by PCR for SARS-CoV-2, 992 were COVID-19 positive (3.
View Article and Find Full Text PDFSingle-cell RNA-sequencing (scRNA-seq) is a set of technologies used to profile gene expression at the level of individual cells. Although the throughput of scRNA-seq experiments is steadily growing in terms of the number of cells, large datasets are not yet commonly generated owing to prohibitively high costs. Integrating multiple datasets into one can improve power in scRNA-seq experiments, and efficient integration is very important for downstream analyses such as identifying cell-type-specific eQTLs.
View Article and Find Full Text PDFDespite strong transethnic genetic correlations reported in the literature for many complex traits, the non-transferability of polygenic risk scores across populations suggests the presence of population-specific components of genetic architecture. We propose an approach that models GWAS summary data for one trait in two populations to estimate genome-wide proportions of population-specific/shared causal SNPs. In simulations across various genetic architectures, we show that our approach yields approximately unbiased estimates with in-sample LD and slight upward-bias with out-of-sample LD.
View Article and Find Full Text PDFDupuytren's disease is a common inherited tissue-specific fibrotic disorder, characterized by progressive and irreversible fibroblastic proliferation affecting the palmar fascia of the hand. Although genome-wide association study (GWAS) have identified 24 genomic regions associated with Dupuytrens risk, the biological mechanisms driving signal at these regions remain elusive. We identify potential biological mechanisms for Dupuytren's disease by integrating the most recent, largest GWAS (3,871 cases and 4,686 controls) with eQTLs (47 tissue panels from five consortia, total n = 3,975) to perform a transcriptome-wide association study.
View Article and Find Full Text PDFTranscriptome-wide association studies using predicted expression have identified thousands of genes whose locally regulated expression is associated with complex traits and diseases. In this work, we show that linkage disequilibrium induces significant gene-trait associations at non-causal genes as a function of the expression quantitative trait loci weights used in expression prediction. We introduce a probabilistic framework that models correlation among transcriptome-wide association study signals to assign a probability for every gene in the risk region to explain the observed association signal.
View Article and Find Full Text PDFFunctional genomics data has the potential to increase GWAS power by identifying SNPs that have a higher prior probability of association. Here, we introduce a method that leverages polygenic functional enrichment to incorporate coding, conserved, regulatory, and LD-related genomic annotations into association analyses. We show via simulations with real genotypes that the method, functionally informed novel discovery of risk loci (FINDOR), correctly controls the false-positive rate at null loci and attains a 9%-38% increase in the number of independent associations detected at causal loci, depending on trait polygenicity and sample size.
View Article and Find Full Text PDFAlthough recent studies provide evidence for a common genetic basis between complex traits and Mendelian disorders, a thorough quantification of their overlap in a phenotype-specific manner remains elusive. Here, we have quantified the overlap of genes identified through large-scale genome-wide association studies (GWASs) for 62 complex traits and diseases with genes containing mutations known to cause 20 broad categories of Mendelian disorders. We identified a significant enrichment of genes linked to phenotypically matched Mendelian disorders in GWAS gene sets; of the total 1,240 comparisons, a higher proportion of phenotypically matched or related pairs (n = 50 of 92 [54%]) than phenotypically unmatched pairs (n = 27 of 1,148 [2%]) demonstrated significant overlap, confirming a phenotype-specific enrichment pattern.
View Article and Find Full Text PDF