Publications by authors named "Malika Chaouch"

Atypical progeroid syndromes (APS) are premature aging syndromes caused by pathogenic LMNA missense variants, associated with unaltered expression levels of lamins A and C, without accumulation of wild-type or deleted prelamin A isoforms, as observed in Hutchinson-Gilford progeria syndrome (HGPS) or HGPS-like syndromes. A specific LMNA missense variant, (p.Thr528Met), was previously identified in a compound heterozygous state in patients affected by APS and severe familial partial lipodystrophy, whereas heterozygosity was recently identified in patients affected by Type 2 familial partial lipodystrophy.

View Article and Find Full Text PDF

Importance: Ataxia with oculomotor apraxia type 1 (AOA1) is an autosomal recessive cerebellar ataxia due to mutations in the aprataxin gene (APTX) that is characterized by early-onset cerebellar ataxia, oculomotor apraxia, axonal motor neuropathy, and eventual decrease of albumin serum levels.

Objectives: To improve the clinical, biomarker, and molecular delineation of AOA1 and provide genotype-phenotype correlations.

Design, Setting, And Participants: This retrospective analysis included the clinical, biological (especially regarding biomarkers of the disease), electrophysiologic, imaging, and molecular data of all patients consecutively diagnosed with AOA1 in a single genetics laboratory from January 1, 2002, through December 31, 2014.

View Article and Find Full Text PDF

Background: Bilateral subthalamic nucleus deep brain stimulation (STN-DBS) of parkinson's disease (PD) patients has demonstrated to improve motor performance and to reduce dopa-induced dyskinesia. An association between the occurrence of dyskinesias and LRRK2 (leucine-rich repeat kinase 2) G2019S gene mutations has recently been suggested. The aim of this study is to discover the impact of the G2019S mutation (with high incidence in the authors' native Algeria) on the symptom response of PD in patients who underwent STN-DBS.

View Article and Find Full Text PDF

Autosomal recessive primary microcephaly is a neurodevelopmental disorder characterized by congenitally reduced head circumference by at least two standard deviations (SD) below the mean for age and gender. It is associated with nonprogressive mental retardation of variable degree, minimal neurological deficit with no evidence of architectural anomalies of the brain. So far, 12 genetic loci (MCPH1-12) and corresponding genes have been identified.

View Article and Find Full Text PDF

Purpose: To document the clinical characteristics and inheritance pattern of epilepsy in multigeneration Algerian families.

Methods: Affected members from extended families with familial epilepsy were assessed at the University Hospital of Oran in Algeria. Available medical records, neurological examination, electroencephalography and imaging data were reviewed.

View Article and Find Full Text PDF

Background: Autosomal recessive cerebellar ataxias (ARCA) are a complex group of neurodegenerative disorders with great genetic and phenotypic heterogeneity, over 30 genes/loci have been associated with more than 20 different clinical forms of ARCA. Genetic heterogeneity combined with highly variable clinical expression of the cerebellar symptoms and overlapping features complicate furthermore the etiological diagnosis of ARCA. The determination of the most frequent mutations and corresponding ataxias, as well as particular features specific to a population, are mandatory to facilitate and speed up the diagnosis process, especially when an appropriate treatment is available.

View Article and Find Full Text PDF

Purpose: The goal of this case-control study was to identify the significance of consanguinity and other risk factors for epilepsy in Oran, Algeria.

Methods: Unrelated epileptic patients upwards of 16 years, who attended the Neurology Department between October 2013 and March 2014 were included in the study. Controls, matched for age and sex, were selected among non-epileptic patients attending the same department during the same period.

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) is a common epilepsy syndrome with a complex etiology. Despite evidence for the participation of genetic factors, the genetic basis of TLE remains largely unknown. A role for the galanin neuropeptide in the regulation of epileptic seizures has been established in animal models more than two decades ago.

View Article and Find Full Text PDF

Tel2-interacting proteins 1 and 2 (TTI1 and TTI2) physically interact with telomere maintenance 2 (TEL2) to form a conserved trimeric complex called the Triple T complex. This complex is a master regulator of phosphoinositide-3-kinase-related protein kinase (PIKKs) abundance and DNA damage response signaling. Using a combination of autozygosity mapping and high-throughput sequencing in a large consanguineous multiplex family, we found that a missense c.

View Article and Find Full Text PDF

Joubert syndrome and related disorders (JSRD) are clinically and genetically heterogeneous ciliopathies sharing a peculiar midbrain-hindbrain malformation known as the 'molar tooth sign'. To date, 19 causative genes have been identified, all coding for proteins of the primary cilium. There is clinical and genetic overlap with other ciliopathies, in particular with Meckel syndrome (MKS), that is allelic to JSRD at nine distinct loci.

View Article and Find Full Text PDF

Homozygous mutations in the ASPM gene are a major cause of autosomal recessive primary microcephaly (MCPH). Here we report on a consanguineous Algerian family in which three out of five children presented with severe microcephaly, simplified cortical gyration, mild to severe mental retardation and low to low-normal birth weight. Given the parental consanguinity with the unaffected parents being third cousins once removed, the most probable pattern of inheritance was autosomal recessive.

View Article and Find Full Text PDF

Charcot-Marie-Tooth (CMT) disorders are a clinically and genetically heterogeneous group of hereditary motor and sensory neuropathies characterized by muscle weakness and wasting, foot and hand deformities, and electrophysiological changes. The CMT4H subtype is an autosomal recessive demyelinating form of CMT that was recently mapped to a 15.8-Mb region at chromosome 12p11.

View Article and Find Full Text PDF

The Charcot-Marie-Tooth (CMT) disorders comprise a group of clinically and genetically heterogeneous hereditary motor and sensory neuropathies, which are mainly characterized by muscle weakness and wasting, foot deformities, and electrophysiological, as well as histological, changes. A subtype, CMT2, is defined by a slight or absent reduction of nerve-conduction velocities together with the loss of large myelinated fibers and axonal degeneration. CMT2 phenotypes are also characterized by a large genetic heterogeneity, although only two genes---NF-L and KIF1Bbeta---have been identified to date.

View Article and Find Full Text PDF