Background & Aims: c-Jun N-terminal kinase (JNK) 1 and JNK2 are expressed in hepatocytes and have overlapping and distinct functions. JNK proteins are activated via phosphorylation in response to acetaminophen- or carbon tetrachloride (CCl4)-induced liver damage; the level of activation correlates with the degree of injury. SP600125, a JNK inhibitor, has been reported to block acetaminophen-induced liver injury.
View Article and Find Full Text PDFBiochim Biophys Acta
January 2015
Liver regeneration is controlled by a complex network of signaling molecules, and a prominent role for c-jun N-terminal kinase has been suggested during this process. In the present study, we aimed to characterize and define the cell-type-specific contribution of JNK1 activation during liver regeneration. We used hepatocyte-specific JNK1 knockout mice (JNK1(Δhepa)) using the cre/lox-P system.
View Article and Find Full Text PDFBackground & Aims: Chronic liver injury triggers complications such as liver fibrosis and hepatocellular carcinoma (HCC), which are associated with alterations in distinct signalling pathways. Of particular interest is the interaction between mechanisms controlled by IKKγ/NEMO, the regulatory IKK subunit, and Jnk activation for directing cell death and survival. In the present study, we aimed to define the relevance of Jnk in hepatocyte-specific NEMO knockout mice (NEMO(Δhepa)), a genetic model of chronic inflammatory liver injury.
View Article and Find Full Text PDFUnlabelled: In human and murine models of nonalcoholic steatohepatitis (NASH), increased hepatocyte apoptosis is a critical mechanism contributing to inflammation and fibrogenesis. Caspase 8 (Casp8) is essential for death-receptor-mediated apoptosis activity and therefore its modulation might be critical for the pathogenesis of NASH. The aim was to dissect the role of hepatocyte Casp8 in a murine model of steatohepatitis.
View Article and Find Full Text PDFBackground & Aims: The transcription factor nuclear factor κB (NF-κB) is activated by the IκB kinase complex. The regulatory subunit of this complex, NF-κB essential modifier (NEMO or IKBKG), is a tumor suppressor. Hepatocyte-specific deletion of NEMO induces chronic liver inflammation that leads to apoptosis, oxidative stress, development of nonalcoholic steatohepatitis, and hepatocarcinogenesis.
View Article and Find Full Text PDFNuclear factor kappaB (NF-kappaB) is one of the main transcription factors involved in regulating apoptosis, inflammation, chronic liver disease, and cancer progression. The IKK complex mediates NF-kappaB activation and deletion of its regulatory subunit NEMO in hepatocytes (NEMO(Delta hepa)) triggers chronic inflammation and spontaneous hepatocellular carcinoma development. We show that NEMO(Delta hepa) mice were resistant to Fas-mediated apoptosis but hypersensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as the result of a strong up-regulation of its receptor DR5 on hepatocytes.
View Article and Find Full Text PDFUnlabelled: Nuclear factor kappaB (NF-kappaB) is one of the main transcription factors involved in liver regeneration after partial hepatectomy (PH). It is activated upon IkappaB phosphorylation by the IkappaB kinase (IKK) complex comprising inhibitor of kappaB kinase 1 (IKK1), inhibitor of kappaB kinase 2 (IKK2), and nuclear factor-B essential modifier (NEMO). We studied the impact of hepatocyte-specific IKK2 deletion during liver regeneration.
View Article and Find Full Text PDF