Intrahepatic transplantation of islets requires a lot of islets because more than 50% of the graft is lost during the 24 hours following transplantation. We analyzed, in a rat model, early post-transplantation inflammation using systemic inflammatory markers, or directly in islet-transplanted livers by immunohistochemistry. H HRMAS NMR was employed to investigate metabolic responses associated with the transplantation.
View Article and Find Full Text PDFObjective: Our aim was to evaluate a fluorescence-based enhanced-reality system to assess intestinal viability in a laparoscopic mesenteric ischemia model.
Materials And Methods: A small bowel loop was exposed, and 3 to 4 mesenteric vessels were clipped in 6 pigs. Indocyanine green (ICG) was administered intravenously 15 minutes later.
Purpose: Using the metabolomics by NMR high-resolution magic angle spinning spectroscopy, we assessed the lung metabolome of various animal species in order to identify the animal model that could be substituted to human lung in studies on fresh lung biopsies.
Methods: The experiments were conducted on intact lung biopsy samples of pig, rat, mouse, and human using a Bruker Advance III 500 spectrometer. Thirty-five to 39 metabolites were identified and 23 metabolites were quantified.
Standards are needed to control the quality of the lungs from nonheart-beating donors as potential grafts. This was here assessed using the metabolomics 1H high-resolution magic angle spinning NMR spectroscopy. Selective perfusion of the porcine bilung block was set up 30 min after cardiac arrest with cold Perfadex®.
View Article and Find Full Text PDF