Publications by authors named "Malid Molloholli"

Volumetric placental measurement using 3-D ultrasound has proven clinical utility in predicting adverse pregnancy outcomes. However, this metric cannot currently be employed as part of a screening test due to a lack of robust and real-time segmentation tools. We present a multiclass (MC) convolutional neural network (CNN) developed to segment the placenta, amniotic fluid, and fetus.

View Article and Find Full Text PDF

We present a new technique to fully automate the segmentation of an organ from 3D ultrasound (3D-US) volumes, using the placenta as the target organ. Image analysis tools to estimate organ volume do exist but are too time consuming and operator dependant. Fully automating the segmentation process would potentially allow the use of placental volume to screen for increased risk of pregnancy complications.

View Article and Find Full Text PDF

Background: Two-dimensional (2D) ultrasound quality has improved in recent years. Quantification of cardiac dimensions is important to screen and monitor certain fetal conditions. We assessed the feasibility and reproducibility of fetal ventricular measures using 2D echocardiography, reported normal ranges in our cohort, and compared estimates to other modalities.

View Article and Find Full Text PDF