Publications by authors named "Malgorzata Wierzbowska"

Lead halide perovskites are structurally not stable due to their ionic bonds. Using sulfur agents in the crystal growth improves the stability and performance of the photovoltaic and light-emitting devices. In this theoretical work, we use a small toy S-radical in place of A cation in the bulk of lead iodide perovskite, and highlight the significance of the Pb-S covalent-double-bond formation for: the charge redistribution on the neighboring bonds that also turn to be covalent, phase transformation to a stable non-perovskite structure, and superior optoelectronic properties.

View Article and Find Full Text PDF

Halide perovskites are widely used as components of electronic and optoelectronic devices such as solar cells, light-emitting diodes (LEDs), optically pumped lasers, field-effect transistors, photodetectors, and γ-detectors. Despite this wide range of applications, the construction of an electrically pumped perovskite laser remains challenging. In this paper, we numerically justify that mixing two perovskite compounds with different halide elements can lead to optical properties suitable for electrical pumping.

View Article and Find Full Text PDF

We theoretically investigate lead iodide perovskites of general formula APbI for a series of metallic cations (namely Cs, Rb, K, Na and Li) by means of density functional theory, the GW method and the Bethe-Salpeter equation including spin-orbit coupling. We demonstrate that the low-energy edges (up to 1.3 eV) of the absorption spectra are dominated by weakly bound excitons, with binding energies of ∼ 30-80 meV, and the corresponding intensities increase as metallic cations become lighter.

View Article and Find Full Text PDF

Wannier90 is an open-source computer program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch states. It is interfaced to many widely used electronic-structure codes thanks to its independence from the basis sets representing these Bloch states. In the past few years the development of Wannier90 has transitioned to a community-driven model; this has resulted in a number of new developments that have been recently released in Wannier90 v3.

View Article and Find Full Text PDF

The gapless edge states have been found in a 2D molecular system built with light atoms: C,O,H. This prediction is done on the basis of combined density functional theory (DFT) and tight-binding calculations. The system does not exhibit any effect of the spin-orbit coupling (SOC), neither intrinsic nor Rashba type.

View Article and Find Full Text PDF

Memory devices operating due to the fast proton transfer (PT) process are proposed by the means of first-principles calculations. Writing  information is performed using the electrostatic potential of scanning tunneling microscopy (STM). Reading information is based on the effect of the local magnetization induced at the zigzag graphene nanoribbon (Z-GNR) edge-saturated with oxygen or the hydroxy group-and can be realized with the use of giant magnetoresistance (GMR), a magnetic tunnel junction or spin-transfer torque devices.

View Article and Find Full Text PDF

We focus on two classes of organic switches operating due to the photo- or field-induced proton transfer (PT) process. By means of first-principles simulations, we search for the atomic contacts that strengthen diversity of the two swapped current-voltage (I-V) characteristics between two tautomers. We emphasize that the low-resistive contacts do not necessarily possess good switching properties.

View Article and Find Full Text PDF

We investigate the microscopic processes leading to graphene growth by the chemical vapor deposition of propane in an argon atmosphere at the SiC surface. Experimentally, it is known that the presence of argon fastens the dehydrogenation processes at the surface, at high temperatures of about 2000 K. We perform ab initio calculations, at zero temperature, to check whether chemical reactions can explain this phenomenon.

View Article and Find Full Text PDF

Objectives: To develop data-driven criteria for clinically inactive disease on and off therapy for juvenile dermatomyositis (JDM).

Methods: The Paediatric Rheumatology International Trials Organisation (PRINTO) database contains 275 patients with active JDM evaluated prospectively up to 24 months. Thirty-eight patients off therapy at 24 months were defined as clinically inactive and included in the reference group.

View Article and Find Full Text PDF

Interactions between rhenium impurities in silicon are investigated by means of the density functional theory (DFT) and the DFT + U scheme. All couplings between impurities are ferromagnetic except the Re-Re dimers which in the DFT method are nonmagnetic, due to the formation of the chemical bond supported by substantial relaxation of the geometry. The critical temperature is calculated by means of classical Monte Carlo (MC) simulations with the Heisenberg Hamiltonian.

View Article and Find Full Text PDF

Objective: To develop a provisional definition for the evaluation of response to therapy in juvenile dermatomyositis (DM) based on the Paediatric Rheumatology International Trials Organisation juvenile DM core set of variables.

Methods: Thirty-seven experienced pediatric rheumatologists from 27 countries achieved consensus on 128 difficult patient profiles as clinically improved or not improved using a stepwise approach (patient's rating, statistical analysis, definition selection). Using the physicians' consensus ratings as the "gold standard measure," chi-square, sensitivity, specificity, false-positive and-negative rates, area under the receiver operating characteristic curve, and kappa agreement for candidate definitions of improvement were calculated.

View Article and Find Full Text PDF