Among potential macromolecule-based pharmaceuticals, polycations seem particularly interesting due to their proven antimicrobial properties and use as vectors in gene therapy. This makes an understanding of the mechanisms of these molecules' interaction with living structures important, so the goal of this paper was to propose and carry out experiments that will allow us to characterize these phenomena. Of particular importance is the question of toxicity of such structures to mammalian cells and, in the work presented here, two lines, normal fibroblasts 3T3-L1 and A549 lung cancer, were used to determine this.
View Article and Find Full Text PDFThe biological activity of polycations is usually associated with their biocidal properties. Their antibacterial features are well known, but in this work, observations on the antifungal properties of macromolecules obtained by methacrylamido propyl trimethyl ammonium chloride (MAPTAC) polymerization are presented. The results, not previously reported, make it possible to correlate antifungal properties directly with the structure of the macromolecule, in particular the molecular mass.
View Article and Find Full Text PDFNew chemical structures with antifungal properties are highly desirable from the point of view of modern pharmaceutical science, especially due to the increasingly widespread instances of drug resistance in the case of these diseases. One way to solve this problem is to use polymeric drugs, widely described as biocidal, positively charged macromolecules. In this work, we present the synthesis of new cationic β-glucan derivatives that show selective antifungal activity and at the same time low toxicity toward animal and human cells.
View Article and Find Full Text PDF