Solanine (SOL), chaconine (CHA), and tomatine (TOM) are plant secondary metabolites produced mainly by the species of Solanaceae family, such as tomato Solanum lycopersicum L. These glycoalkaloids (GAs) have a wide range of biological activity, also in insects. However, their mechanisms of action are not precisely understood.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
December 2024
Various factors may affect the antioxidative system in insects, including xenobiotics. Glycoalkaloids (GAs) are plant secondary metabolites produced mainly by the Solanaceae family (nightshades), such as the food crop tomato Solanum lycopersicum L. These compounds exhibit a wide range of biological activities and have attracted increasing interest in the context of potential insecticide properties.
View Article and Find Full Text PDFSolanine (SOL) and chaconine (CHA) are glycoalkaloids (GAs) produced mainly by Solanum plants. These plant secondary metabolites affect insect metabolism; thus, they have the potential to be applied as natural plant protection products. However, it is not known which GA concentration induces physiological changes in animals.
View Article and Find Full Text PDFGlycoalkaloids (GAs) are produced naturally by plants and affect insect survivability and fertility. These compounds can be considered potential bioinsecticides; however, the mechanisms and effects of their action remain undiscovered. As lipids are essential molecules for the proper functioning of an insect organism, this research aimed to determine the effects of GAs on the lipid metabolism of the beetle.
View Article and Find Full Text PDFThe cockroach Gromphadorhina coquereliana can survive at low temperatures under extensive periods of cold stress. To assess energy management and insect adaptation in response to cold, we measured mitochondrial activity and oxidative stress in muscle and fat body tissues from G. coquereliana under a fluctuating thermal regime (FTR; stressed at 4°C for 3 h on 3 consecutive days, with or without 24 h recovery).
View Article and Find Full Text PDFCancer is still one of the main causes of death worldwide. For this reason, new compounds that have chemotherapeutic potential have been identified. One such group of substances is glycoalkaloids (GAs).
View Article and Find Full Text PDFLow temperatures in nature occur together with desiccation conditions, causing changes in metabolic pathways and cellular dehydration, affecting hemolymph volume, water content and ion homeostasis. Although some research has been conducted on the effect of low temperature on Gromphadorhina coquereliana, showing that it can survive exposures to cold or even freezing, no one has studied the effect of cold on the hemolymph volume and the immune response of this cockroach. Here, we investigated the effect of low temperature (4 °C) on the abovementioned parameters, hemocyte morphology and total number.
View Article and Find Full Text PDFDespite its complex life cycle including unicellular and multicellular stages, the slime mold Dictyostelium discoideum, a well-known model in biomedical research, has not been used as a model organism in studies on mitochondrial import, including its significance in cellular processes. Moreover, data concerning mitochondrial protein import machinery in D. discoideum mitochondria is limited and nothing is known about the impact of that machinery on slime mold life cycle.
View Article and Find Full Text PDFCold tolerance is considered an important factor determining the geographic distribution of insects. We have previously shown that despite its tropical origin, the cockroach is capable of surviving exposures to cold. However, the freezing tolerance of this species had not yet been examined.
View Article and Find Full Text PDFBackground: Sulfakinins are arthropod neuropeptides that are structurally and functionally similar to vertebrate gastrin-cholecystokinin. Sulfakinins with sulfated tyrosine (sSK) or nonsulfated tyrosine (nSK) in the C-terminated heptapeptide XY(SO3H)GHMRFamide display different biological functions, including myotropic activity, inhibition of food intake, stimulation of digestive enzymes and regulation of carbohydrate and lipid content.
Objective: To reveal the mechanisms by which sulfakinin signalling modulates lipid homeostasis, we analysed the changes in the level and composition of fatty acids and organic compounds in the fat body and haemolymph of Tenebrio molitor larvae after nSK and sSK treatment.
Background: Insects are the largest and the most widely distributed group of animals in the world. Their diversity is a source of incredible variety of different mechanisms of life processes regulation. There are many agents that regulate immunology, reproduction, growth and development or metabolism.
View Article and Find Full Text PDFProtective mechanisms against cold stress are well studied in terrestrial and polar insects; however, little is known about these mechanisms in tropical insects. In our study, we tested if a tropical cockroach Gromphadorhina coquereliana, possesses any protective mechanisms against cold stress. Based on the results of earlier studies, we examined how short-term (3 h) cold (4°C) influences biochemical parameters, mitochondrial respiration activity, and the level of HSPs and aquaporins expression in the fat body and leg muscles of G.
View Article and Find Full Text PDFArch Insect Biochem Physiol
December 2016
We investigated the effect of neuropeptide, the nonsulfated sulfakinin (SK) Zopat-SK-1 (pETSDDYGHLRFa) on the mitochondrial oxidative metabolism in the Zophobas atratus larval fat body. Mitochondria were isolated from beetle fat bodies 2 and 24 h after hormone injection. The administration of 20 pmol of Zopat-SK-1 to feeding larvae led to decreased mitochondrial oxidative activities in larval fat body.
View Article and Find Full Text PDFUncoupling proteins (UCPs) mediate inducible proton conductance in the mitochondrial inner membrane. Herein, we summarize our knowledge regarding UCPs in invertebrates. Since 2001, the presence of UCPs has been demonstrated in nematodes, mollusks, amphioxi, and insects.
View Article and Find Full Text PDFIt has been evidenced that mitochondrial uncoupling protein 4 (UCP4) and ATP-regulated potassium channel (mKATP channel) of insect Gromphadorhina coqereliana mitochondria decrease superoxide anion production. We elucidated whether the two energy-dissipating systems work together on a modulation of superoxide level in cockroach mitochondria. Our data show that the simultaneous activation of UCP4 by palmitic acid and mKATP channel by pinacidil revealed a cumulative effect on weakening mitochondrial superoxide formation.
View Article and Find Full Text PDFProtein import into mitochondria requires a wide variety of proteins, forming complexes in both mitochondrial membranes. The TOM complex (translocase of the outer membrane) is responsible for decoding of targeting signals, translocation of imported proteins across or into the outer membrane, and their subsequent sorting. Thus the TOM complex is regarded as the main gate into mitochondria for imported proteins.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
May 2015
Insects cope with thermal stressors using mechanisms such as rapid cold hardening and acclimation. These mechanisms have been studied in temperate insects, but little is known about their use by tropical insects in response to cold stress. Here, we investigated whether cold stress (1×8 h and 3×8 h at 4°C) triggers a metabolic response in the Madagascar cockroach Gromphadorhina coquereliana.
View Article and Find Full Text PDFIn insects, neuropeptide adipokinetic hormone (AKH) released from the corpora cardiaca mobilizes lipids and carbohydrates in the fat body. We examined the developmental differences in the action of Tenmo-AKH, a bioanalogue belonging to the adipokinetic/hypertrahelosemic family (AKH/HrTH), on the lipid composition of larval and pupal fat bodies in the beetle Zophobas atratus. Tenmo-AKH was administered to the beetle larvae and pupae either as a single dose or as two doses of 20 pmol during a 24h interval.
View Article and Find Full Text PDFInsect sulfakinins are multifunctional neuropeptides homologous to vertebrate gastrin/cholecystokin (CCK) neuropeptide hormones. We investigated the action of the nonsulfated sulfakinin Zopat-SK-1 (pETSDDYGHLRFa) on the levels of chosen metabolites in the Zophobas atratus beetle fat body. Samples of fat body were collected 2h and 24h after hormone injection.
View Article and Find Full Text PDFIn the present study, we describe the existence of mitochondrial ATP-dependent K(+) channel (mitoKATP) in two different insect tissues, fat body and muscle of cockroach Gromphadorhina coquereliana. We found that pharmacological substances known to modulate potassium channel activity influenced mitochondrial resting respiration. In isolated mitochondria oxygen consumption increased by about 13% in the presence of potassium channel openers (KCOs) such as diazoxide and pinacidil.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
September 2013
We investigated the influence of adipokinetic hormone (AKH), an insect neurohormone, on uncoupling protein 4 (ZaUCP4) expression and activity in larval and pupal fat body mitochondria of the beetle Zophobas atratus in relation to intermediary metabolism. Homologous Tenmo-AKH was administered to the beetle larvae and pupae as either a single dose or as two doses of 20pmol during a 24h interval. In the larval and pupal fat bodies, downregulation of ZaUCP4 expression at the mRNA and protein levels was observed 24h and 48h after AKH treatment, respectively.
View Article and Find Full Text PDFUncoupling protein 4 (UCP4) is a member of the UCP subfamily that mediates mitochondrial uncoupling, and sequence alignment predicts the existence of UCP4 in several insects. The present study demonstrates the first molecular identification of a partial Zophobas atratus UCP4-coding sequence and the functional characterisation of ZaUCP4 in the mitochondria of larval and pupal fat bodies of the beetle. ZaUCP4 shows a high similarity to predicted insect UCP4 isoforms and known mammalian UCP4s, both at the nucleotide and amino acid sequence levels.
View Article and Find Full Text PDF