Publications by authors named "Malgorzata Mikolajczyk"

Background: Influenza infection causes excess hospitalizations and deaths in younger patients, but susceptibility to severe disease is poorly understood. While mucosal antibodies can limit influenza-associated infection and disease, little is known about acute mucosal antibody responses to influenza infection.

Objectives: These studies characterize mucosal antiviral antibody production in children during lower respiratory infection (LRI) with H1N1 influenza versus other viral LRI and examine the relationship between mucosal antiviral antibodies and protection against severe disease.

View Article and Find Full Text PDF

Background: Previously we demonstrated that DNA vaccination of nonhuman primates (NHP) with a small subset of vaccinia virus (VACV) immunogens (L1, A27, A33, B5) protects against lethal monkeypox virus challenge. The L1 and A27 components of this vaccine target the mature virion (MV) whereas A33 and B5 target the enveloped virion (EV).

Results: Here, we demonstrated that the antibodies produced in vaccinated NHPs were sufficient to confer protection in a murine model of lethal Orthopoxvirus infection.

View Article and Find Full Text PDF

Influenza A virus (FLUAV), the causative agent of influenza infection, has received extensive attention due to the recent swine-origin H1N1 pandemic. FLUAV has long been the cause of annual epidemics as well as less frequent but more severe global pandemics. Here, we describe a biosensor utilizing electrically active magnetic (EAM) polyaniline-coated nanoparticles as the transducer in an electrochemical biosensor for rapidly identifying FLUAV strains based on receptor specificity, which will be useful to monitor animal influenza infections and to characterize pandemic potential of strains that have transmitted from animals to humans.

View Article and Find Full Text PDF

Electrically active magnetic (EAM) nanoparticles, consisting of aniline monomer polymerized around gamma iron(III) oxide (γ-Fe(2)O(3)) cores, serve as the basis of a direct-charge transfer biosensor developed for detection of surface glycoprotein hemagglutinin (HA) from the Influenza A virus (FLUAV) H5N1 (A/Vietnam/1203/04). H5N1 preferentially binds α2,3-linked host glycan receptors. EAM nanoparticles were immunofunctionalized with antibodies against target HA.

View Article and Find Full Text PDF

To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users of different expertise levels. The two proteins (a 50-kDa Fab and a 60-kDa glutathione S-transferase [GST] antigen) form a relatively high-affinity complex, so participants needed to optimize several experimental parameters, including ligand immobilization and regeneration conditions as well as analyte concentrations and injection/dissociation times.

View Article and Find Full Text PDF

Detoxification and clearance of extracellular hemoglobin (Hb) have been attributed to its removal by the CD163 scavenger receptor pathway. However, even low-level hydrogen peroxide (H(2)O(2)) exposure irreversibly modifies Hb and severely impairs Hb endocytosis by CD163. We show here that when Hb is bound to the high-affinity Hb scavenger protein haptoglobin (Hp), the complex protects Hb from structural modification by preventing alpha-globin cross-links and oxidations of amino acids in critical regions of the beta-globin chain (eg, Trp15, Cys93, and Cys112).

View Article and Find Full Text PDF

Cell-free hemoglobin (Hb) enhances the oxidation-related toxicity associated with inflammation, ischemia, and hemolytic disorders. Hb is highly vulnerable to oxidative damage, and irreversible structural changes involving iron/heme oxidation, heme-adduct products, and amino acid oxidation have been reported. Specific structural features of Hb, such as unconstrained alpha-chains and molecular size, determine the efficiency of interactions between the endogenous Hb scavengers haptoglobin (Hp) and CD163.

View Article and Find Full Text PDF

Hemoglobin (Hb) released into the circulation during hemolysis and chemically modified Hb proposed for use as oxygen therapeutics exert toxic effects that are partially attributable to heme's oxidant activity. Native extracellular Hb is scavenged by haptoglobin (Hp) after alphabeta-subunit dimerization. In the absence of Hp, monocyte/macrophage cell-surface CD163 binds and clears Hb.

View Article and Find Full Text PDF

Measles infection induces lifelong immunity; however, wild-type infection stimulates higher levels of measles-virus-neutralizing antibodies (mnAbs) than does vaccination. Because the proportion of the donor population with vaccine-induced measles immunity is increasing, this study was conducted to determine whether this shift in demographic characteristics affects mnAb levels in contemporary lots of Immune Globulin Intravenous (Human) (IGIV). When 166 lots of 7 IGIV products manufactured between 1998 and 2003 were assayed by plaque-reduction neutralization test, there was a progressive decrease in geometric mean titers in lots manufactured between 1999 and 2002.

View Article and Find Full Text PDF

The most common infections in primary immune deficiency disease (PIDD) patients involve encapsulated bacteria, mainly Haemophilus influenzae type b (Hib) and Streptococcus pneumoniae (pneumococcus). Thus, it is important to know the titers of Hib- and pneumococcus-specific antibodies that are present in immune globulin (Ig) intravenous (IGIV) preparations used to treat PIDD. In this study, seven IGIV preparations were tested by enzyme-linked immunosorbent assay and opsonophagocytic activity for antibody titers to the capsular polysaccharides of Hib and five pneumococcal serotypes.

View Article and Find Full Text PDF

In anticipation of large-scale smallpox vaccination, clinical trials of new vaccine candidates with improved safety profiles, and new vaccinia immune globulin (VIG) products, there is an immediate need to develop new assays to measure vaccinia-specific immune responses. The classical assay to measure vaccinia neutralization, the plaque-reduction neutralization test (PRNT), is slow, labor intensive, and difficult to validate and transfer. Here we describe the development of a novel vaccinia-neutralization assay based on the expression of a reporter gene, beta-galactosidase (beta-Gal).

View Article and Find Full Text PDF