The integration of transition metal dichalcogenides with photonic structures such as sol-gel SiO:TiO optical waveguides (WGs) makes possible the fabrication of photonic devices with the desired characteristics in the visible spectral range. In this study, we propose and experimentally demonstrate a MoS-based photodetector integrated with a sol-gel SiO:TiO WG. Based on the spectroscopic measurements performed for our device, we concluded that the light entering the WG is almost completely channeled out from the WG and absorbed by the MoS flake, which is deposited on the WG.
View Article and Find Full Text PDFMonochalcogenides of groups III (GaS, GaSe) and VI (GeS, GeSe, SnS, and SnSe) are materials with interesting thickness-dependent characteristics, which have been applied in many areas. However, the stability of layered monochalcogenides (LMs) is a real problem in semiconductor devices that contain these materials. Therefore, it is an important issue that needs to be explored.
View Article and Find Full Text PDFIn the past few decades, several methods concerning optical thin films have been established to facilitate the development of integrated optics. This paper provides a brief depiction of different techniques for implementing optical waveguide thin films that involve chemical, physical, and refractive index modification methods. Recent advances in these fabrication methods are also been presented.
View Article and Find Full Text PDFLasing properties have been investigated for Yb(3+) doped glasses with similar emission cross sections (σ(emi)) and lifetime while possessing different Stark levels. Narrow Stark splitting of Yb(3+)-phosphate glass is responsible for severe heat generation, narrow emission band and much smaller σ(emi) at lasing wavelength, making Yb(3+)-phosphate glass unsuccessful to achieve laser output, whereas 1.166W cw laser was obtained in Yb(3+)-fluorophosphate (FP) glass with broader Stark splitting.
View Article and Find Full Text PDF60Bi(2)O(3)-20B(2)O(3)-10SiO(2)-10Ga(2)O(3) glasses doped with 1-9 mol% Yb(2)O(3) were prepared and investigated mainly on their violet-green excitation for the typical NIR emission of Yb(3+), generally excited in the NIR. Two violet excitation bands at 365 nm and 405 nm are related to Yb(2+) and Bi(3+). 465 nm excitation band and 480 nm absorption band in the blue-green are assigned to Bi(0) metal nanoparticles/grains.
View Article and Find Full Text PDFMagnesium spinel (MgAl2O4) powders doped with Yb(3+) ions have been synthesized by a sol-gel method and heat-treated in the range of 700-1000 °C for 3 h. XRD patterns indicated that the powders have a cubic structure with high crystallite dispersion. Nanoparticles in the range of 10-30 nm are obtained as a function of the dopant concentration and sintering temperature.
View Article and Find Full Text PDF