Introduction And Objective: Environmental lead (Pb) is a serious public health problem. At high levels, Pb is devastating to almost all organs. On the other hand, it is difficult to determine a safe level of exposure to Pb.
View Article and Find Full Text PDFEur J Orthop Surg Traumatol
May 2014
Bisphosphonates (BPs) are well-known substances with very efficient antiresorptive properties. Their beneficial actions are useful not only in achieving better bone mineral density but also in improving bone microarchitecture, strength and, consequently, its quality. Surgical cement, being a polymer composite, is required to be highly biocompatible and biotolerant.
View Article and Find Full Text PDFLight-harvesting pigment-protein complex of Photosystem II (LHCII) is the largest photosynthetic antenna complex of plants and the most abundant membrane protein in the biosphere. Plant fitness and productivity depend directly on a balance between excitations in the photosynthetic apparatus, generated by captured light quanta, and the rate of photochemical processes. Excess excitation energy leads to oxidative damage of the photosynthetic apparatus and entire organism and therefore the balance between the excitation density and photosynthesis requires precise and efficient regulation, operating also at the level of antenna complexes.
View Article and Find Full Text PDFExcitation of the major photosynthetic antenna complex of plants, LHCII, with blue light (470nm) provides an advantage to plants, as it gives rise to chlorophyll a fluorescence lifetimes shorter than with excitation with red light (635nm). This difference is particularly pronounced in fluorescence emission wavelengths longer than 715nm. Illumination of LHCII preparation with blue light additionally induces fluorescence quenching, which develops on a minute timescale.
View Article and Find Full Text PDFPlants have developed several adaptive regulatory mechanisms, operating at all the organization levels, to optimize utilization of light energy and to protect themselves against over-excitation-related damage. We report activity of a previously unknown possible regulatory mechanism that operates at the molecular level of the major photosynthetic pigment-protein complexes of plants, LHCII. This mechanism is driven exclusively by blue light, operates in the trimeric but not in the monomeric complex, and results in singlet excitation quenching leading to thermal energy dissipation.
View Article and Find Full Text PDFRaman scattering spectra of light-harvesting complex LHCII isolated from spinach were recorded with an argon laser, tuned to excite the most red-absorbing LHCII-bound xanthophylls (514.5 nm). The intensity of the nu(4) band (at ca.
View Article and Find Full Text PDFThe xanthophyll cycle pigments, violaxanthin and zeaxanthin, present outside the light-harvesting pigment-protein complexes of Photosystem II (LHCII) considerably enhance specific aggregation of proteins as revealed by analysis of the 77 K chlorophyll a fluorescence emission spectra. Analysis of the infrared absorption spectra in the Amide I region shows that the aggregation is associated with formation of intermolecular hydrogen bonding between the alpha helices of neighboring complexes. The aggregation gives rise to new electronic energy levels, in the Soret region (530 nm) and corresponding to the Q spectral region (691 nm), as revealed by analysis of the resonance light scattering spectra.
View Article and Find Full Text PDF