Peptides represent an increasingly important class of pharmaceutical products. During the last decade or so, acylation with fatty acids has demonstrated considerable success in prolonging the circulating half-life of therapeutic peptides by exploiting the ability of fatty acids to reversibly bind to human serum albumin (HSA), thus significantly impacting their pharmacological profiles. Employing methyl-C-labeled oleic acid or palmitic acid as probe molecules and exploiting HSA mutants designed to probe fatty acid binding, the signals in two-dimensional (2D) nuclear magnetic resonance (NMR) spectra corresponding to high-affinity fatty acid binding sites in HSA were assigned.
View Article and Find Full Text PDFGDF15 and its receptor GFRAL/RET form a non-homeostatic system that regulates food intake and body weight in preclinical species. Here, we describe a GDF15 analog, LY3463251, a potent agonist at the GFRAL/RET receptor with prolonged pharmacokinetics. In rodents and obese non-human primates, LY3463251 decreased food intake and body weight with no signs of malaise or emesis.
View Article and Find Full Text PDFGrowth/differentiation factor 15 (GDF15), also known as MIC-1, is a distant member of the transforming growth factor-β (TGF-β) superfamily and has been implicated in various biological functions, including cancer cachexia, renal and heart failure, atherosclerosis and metabolism. A connection between GDF15 and body-weight regulation was initially suggested on the basis of an observation that increasing GDF15 levels in serum correlated with weight loss in individuals with advanced prostate cancer. In animal models, overexpression of GDF15 leads to a lean phenotype, hypophagia and other improvements in metabolic parameters, suggesting that recombinant GDF15 protein could potentially be used in the treatment of obesity and type 2 diabetes.
View Article and Find Full Text PDFThe cellular ESCRT (endosomal sorting complexes required for transport) pathway drives membrane constriction toward the cytosol and effects membrane fission during cytokinesis, endosomal sorting, and the release of many enveloped viruses, including the human immunodeficiency virus. A component of this pathway, the AAA ATPase Vps4, provides energy for pathway progression. Although it is established that Vps4 functions as an oligomer, subunit stoichiometry and other fundamental features of the functional enzyme are unclear.
View Article and Find Full Text PDFThe ESCRT (endosomal sorting complexes required for transport) pathway functions in vesicle formation at the multivesicular body, the budding of enveloped RNA viruses such as HIV-1, and the final abscission stage of cytokinesis. As the only known enzyme in the ESCRT pathway, the AAA ATPase (ATPase associated with diverse cellular activities) Vps4 provides the energy required for multiple rounds of vesicle formation. Like other Vps4 proteins, yeast Vps4 cycles through two states: a catalytically inactive disassembled state that we show here is a dimer and a catalytically active higher-order assembly that we have modeled as a dodecamer composed of two stacked hexameric rings.
View Article and Find Full Text PDFThe type I AAA (ATPase associated with a variety of cellular activities) ATPase Vps4 and its co-factor Vta1p/LIP5 function in membrane remodeling events that accompany cytokinesis, multivesicular body biogenesis, and retrovirus budding, apparently by driving disassembly and recycling of membrane-associated ESCRT (endosomal sorting complex required for transport)-III complexes. Here, we present electron cryomicroscopy reconstructions of dodecameric yeast Vps4p complexes with and without their microtubule interacting and transport (MIT) N-terminal domains and Vta1p co-factors. The ATPase domains of Vps4p form a bowl-like structure composed of stacked hexameric rings.
View Article and Find Full Text PDF