It was reported previously that in adult males disruption of both androgen and Notch signaling impairs spermatid development and germ cell survival in rodent seminiferous epithelium. To explain the molecular mechanisms of these effects, we focused on the interaction between Notch signaling and androgen receptor (AR) in Sertoli cells and investigate its role in the control of proteins involved in apical ectoplasmic specializations, actin remodeling during spermiogenesis, and induction of germ cell apoptosis. First, it was revealed that in rat testicular explants ex vivo both testosterone and Notch signaling modulate AR expression and cooperate in the regulation of spermiogenesis-related genes (Nectin2, Afdn, Arp2, Eps8) and apoptosis-related genes (Fasl, Fas, Bax, Bcl2).
View Article and Find Full Text PDFDelta/Serrate/LAG-2 (DSL) proteins, which serve as ligands for Notch receptors, mediate direct cell-cell interactions involved in the determination of cell fate and functioning. The present study aimed to explore the role of androgens and estrogens, and their receptors in the regulation of DSL proteins in Sertoli cells. To this end, primary rat Sertoli cells and TM4 Sertoli cell line were treated with either testosterone or 17β-estradiol and antagonists of their receptors.
View Article and Find Full Text PDFContext: Juxtacrine (contact-dependent) communication between the cells of seminiferous epithelium mediated by Notch signalling is of importance for the proper course of spermatogenesis in mammals.
Aims: The present study was designed to evaluate the role of follicle-stimulating hormone (FSH) in the regulation of Notch signalling in rodent seminiferous epithelium.
Methods: We explored the effects (1) of pharmacological inhibition of the hypothalamus-pituitary-gonadal (HPG) axis and FSH replacement in pubertal rats, and (2) of photoinhibition of HPG axis followed by FSH substitution in seasonally breeding rodents, bank voles, on Notch pathway activity.
Our present knowledge on interrelation between morphology/ultrastructure of mitochondria of the Leydig cell and its steroidogenic function is far from satisfactory and needs additional studies. Here, we analyzed the effects of blockade of androgen receptor, triggered by exposure to flutamide, on the expression of steroidogenic proteins (1) and ultrastructure of Leydig cells' constituents (2). We demonstrated that increase in the expression level of steroidogenic (StAR, CYP11A1, 3β-HSD, and CYP19A1) proteins (and respective mRNAs) in rat testicular tissue as well as elevation of intratesticular sex steroid hormone (testosterone and estradiol) levels observed in treated animals correspond well to morphological alterations of the Leydig cell ultrastructure.
View Article and Find Full Text PDFOur recent study demonstrated altered expression of Notch ligands, receptors, and effector genes in testes of pubertal rats following reduced androgen production or signaling. Herein we aimed to explore the role of nuclear androgen receptor (AR) and membrane androgen receptor (Zrt- and Irt-like protein 9; ZIP9) in the regulation of Notch pathway activation in rodent Sertoli cells. Experiments were performed using TM4 and 15P-1 Sertoli cell lines and rat primary Sertoli cells (PSC).
View Article and Find Full Text PDFAdipokines influence energy metabolism and have effects on male reproduction, including spermatogenesis and/or Sertoli cell maturation; however, the relationship between these active proteins and androgens in testicular cells is limited. Here, we studied the impact of short-term exposure to flutamide (an anti-androgen that blocks androgen receptors) on the expression of chemerin, apelin, vaspin and their receptors (CCRL2, CMKLR1, GPR1, APLNR, GRP78, respectively) in adult rat testes. Moreover, the levels of expression of lipid metabolism-modulating proteins (PLIN1, perilipin1; TSPO, translocator protein) and intercellular adherens junction proteins (nectin-2 and afadin) were determined in testicular cells.
View Article and Find Full Text PDFAlthough epidemiological studies from the last years report an increase in the incidences of Leydig cell tumors (previously thought to be a rare disease), the biochemical characteristics of that tumor important for understanding its etiology, diagnosis, and therapy still remains not completely characterized. Our prior studies reported G-protein coupled estrogen receptor signaling and estrogen level disturbances in Leydig cell tumors. In addition, we found that expressions of multi-level-acting lipid balance- and steroidogenesis-controlling proteins including peroxisome proliferator-activated receptor are altered in this tumor.
View Article and Find Full Text PDFBackground: Onset of spermatogenesis at puberty is critically dependent on the activity of hypothalamic-pituitary-gonadal axis and testosterone production by Leydig cells. The aim of this study was to examine whether activation of Notch receptors and expression of Notch ligands and effector genes in rat seminiferous epithelium are controlled by androgen signaling during puberty.
Methods: Peripubertal (5-week-old) Wistar rats received injections of flutamide (50 mg/kg bw) daily for 7 days to reduce androgen receptor (AR) signaling or a single injection of ethanedimethane sulphonate (EDS; 75 mg/kg bw) to reduce testosterone production.