Publications by authors named "Malgorzata Barczyk"

Previous wound healing studies have failed to define a role for either α1β1 or α2β1 integrin in fibroblast-mediated wound contraction, suggesting the involvement of another collagen receptor in this process. Our previous work demonstrated that the integrin subunit α11 is highly induced during wound healing both at the mRNA and protein level, prompting us to investigate and dissect the role of the integrin α11β1 during this process. Therefore, we used mice with a global ablation of either α2 or α11 or both integrin subunits and investigated the repair of excisional wounds.

View Article and Find Full Text PDF

The periodontal ligament is the tissue that connects teeth to bone. The periodontal ligament is a fascinating tissue from a cell biologist's point of view, and because of its special properties and stem-cell content it has also come into the limelight in emerging fields of regenerative medicine. An increased range of genetically modified mouse models offer new tools for studying molecular mechanisms of tooth development.

View Article and Find Full Text PDF

We have previously determined that integrin α11β1 is required on mouse periodontal ligament (PDL) fibroblasts to generate the force needed for incisor eruption. As part of the phenotype of α11(-/-) mice, the incisor PDL (iPDL) is thickened, due to disturbed matrix remodeling. To determine the molecular mechanism behind the disturbed matrix dynamics in the PDL we crossed α11(-/-) mice with the Immortomouse and isolated immortalized iPDL cells.

View Article and Find Full Text PDF

Short (or small) interfering RNAs (siRNAs) are double-stranded RNA molecules about 21-25 nucleotides long that have the capacity to disrupt the activity of genes on a posttranscriptional level. This sequence homology-driven gene silencing capacity has been utilized by researchers to selectively block the translation of mRNA to proteins in order to study specific gene functions and identify target molecules. Importantly, siRNAs have the potential to be used in treatment of disease.

View Article and Find Full Text PDF

The tumor microenvironment strongly influences cancer development, progression, and metastasis. The role of carcinoma-associated fibroblasts (CAFs) in these processes and their clinical impact has not been studied systematically in non-small cell lung carcinoma (NSCLC). We established primary cultures of CAFs and matched normal fibroblasts (NFs) from 15 resected NSCLC.

View Article and Find Full Text PDF

Heparan sulfate (HS) chains bind and modulate the signaling efficiency of many ligands, including members of the fibroblast growth factor (FGF) and platelet-derived growth factor families. We previously reported the structure of HS synthesized by embryonic fibroblasts from mice with a gene trap mutation of Ext1 that encodes a glycosyltransferase involved in HS chain elongation. The gene trap mutation results in low expression of Ext1, and, as a consequence, HS chain length is substantially reduced.

View Article and Find Full Text PDF

Integrins are cell adhesion receptors that are evolutionary old and that play important roles during developmental and pathological processes. The integrin family is composed of 24 alphabeta heterodimeric members that mediate the attachment of cells to the extracellular matrix (ECM) but that also take part in specialized cell-cell interactions. Only a subset of integrins (8 out of 24) recognizes the RGD sequence in the native ligands.

View Article and Find Full Text PDF

Many pathogenic bacteria interact with human integrins to enter host cells and to augment host colonization. Group A Streptococcus (GAS) employs molecular mimicry by direct interactions between the cell surface streptococcal collagen-like protein-1 (Scl1) and the human collagen receptor, integrin alpha2beta1. The collagen-like (CL) region of the Scl1 protein mediates integrin-binding, although, the integrin binding motif was not defined.

View Article and Find Full Text PDF

The fibroblast integrin alpha11beta1 is a key receptor for fibrillar collagens. To study the potential function of alpha11 in vivo, we generated a null allele of the alpha11 gene. Integrin alpha11(-/-) mice are viable and fertile but display dwarfism with increased mortality, most probably due to severely defective incisors.

View Article and Find Full Text PDF

Alpha11beta1 integrin is a collagen receptor, which is expressed in a highly regulated manner in a specific subset of ectomesenchymally and mesodermally derived cells. We previously established that a 3 kb region upstream of the transcription start site of the ITGA11 gene efficiently induced alpha11 transcription in a cell-type specific manner. Using the human fibrosarcoma cell line HT1080 and human skin fibroblasts, we now report that the majority of the activity in the proximal promoter resides in a region spanning nt +25 to nt -176.

View Article and Find Full Text PDF