Publications by authors named "Malgorzata Aleksandrzak"

In this contribution, the effect of hydrogenation conditions atmosphere (temperature and time) on physicochemical properties and photocatalytic efficiency of graphitic carbon nitride (g-CN, gCN) was studied in great details. The changes in the morphology, chemical structure, optical and electrochemical properties were carefully investigated. Interestingly, the as-modified samples exhibited boosted photocatalytic degradation of Rhodamine B (RhB) with the assistance of visible light irradiation.

View Article and Find Full Text PDF

Chlorine is found to be a suitable element for the modification of polymeric carbon nitride properties towards an efficient visible-light photocatalytic activity. In this study, chlorine-doped polymeric carbon nitride (Cl-PCN) has been examined as a photocatalyst in the hydrogen evolution reaction. The following aspects were found to enhance the photocatalytic efficiency of Cl-PCN: (i) unique location of Cl atoms at the interlayers of PCN instead of on its π-conjugated planes, (ii) slight bandgap narrowing, (iii) lower recombination rate of the electron-hole pairs, (iv) improved photogenerated charge transport and separation, and (v) higher reducing ability of the photogenerated electrons.

View Article and Find Full Text PDF

Photocatalytic activity of molybdenum disulfide structures with different dimensions (0D, 1D and 2D) functionalized with polymeric carbon nitride (PCN) is presented. MoSnanotubes (1D), nanoflakes (2D) and quantum dots (0D, QDs) were used, respectively, as co-catalysts of PCN in photocatalytic water splitting reaction to evolve hydrogen. Although, 2D-PCN showed the highest light absorption in visible range and the most enhanced photocurrent response after irradiation with light from 460 to 727 nm, QDs-PCN showed the highest photocatalytic efficiency.

View Article and Find Full Text PDF

The study presents enhancement of photocatalytic hydrogen generation after metal-organic framework (MOF5) carbonization at 700 °C and its utilization as a co-catalyst of graphitic carbon nitride (gCN). Thermal treatment of MOF5 affected the formation of ZnO nanoparticles which played the role of co-catalyst for H evolution. Moreover, significant band-gap narrowing of MOF5 was observed, which also affected the narrowing of the hybrid band gap.

View Article and Find Full Text PDF

Polymeric carbon nitride (PCN), which demonstrates unique properties, has been widely explored, mostly in photocatalysis; however, the evaluation of its biocompatibility is still needed. Herein, the cytocompatibility of PCN with different lateral size distributions (A-PCN with 160 nm, B-PCN with 20 nm, and C-PCN with 10 nm dominating lateral sizes) was investigated. The viability of three cell lines (L929, MCF-7, and HepG2) has been determined using cell counting kit-8 (CCK-8), neutral red uptake (NRU), and lactate dehydrogenase (LDH) leakage assays.

View Article and Find Full Text PDF

We present an ink platform for a printable polymer-graphene nanocomposite that is intended for the development of modular biosensors. The ink consists of catechol-modified chitosan and reduced graphene oxide decorated with platinum nanoparticles (rGO-Pt). We modified the chitosan with catechol groups, in order to obtain adhesive properties and improve solubility.

View Article and Find Full Text PDF

In the present study, graphene oxide (GO) was used for the adsorption of anionic azo-dyes such as Acid Orange 8 (AO8) and Direct Red 23 (DR23) from aqueous solutions. GO was characterized by Fourier Transform-Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HRTEM) and zeta potential measurements. The influence of dye initial concentration, temperature and pH on AO8 and DR23 adsorption onto GO was investigated.

View Article and Find Full Text PDF

The novel approach for deposition of iron oxide nanoparticles with narrow size distribution supported on different sized graphene oxide was reported. Two different samples with different size distributions of graphene oxide (0.5 to 7 μm and 1 to 3 μm) were selectively prepared, and the influence of the flake size distribution on the mitochondrial activity of L929 with WST1 assay in vitro study was also evaluated.

View Article and Find Full Text PDF