Regulated cell death is a fundamental biological process that plays a crucial role in maintaining tissue homeostasis and eliminating damaged or unnecessary cells. Ferroptosis is an iron-dependent process, characterized by the accumulation of oxidized and damaged lipids, which leads to programmed cell death. Among the ferroptotic pathway genes regulating this process, GPX4, TFRC, ACSL4, FSP1, SLC7A11, and PROM2 could be considered.
View Article and Find Full Text PDFThe Hypoxia-Inducible Factor 1 (HIF-1) is essential for cellular adaptation to reduced oxygen levels. It also facilitates the maintenance and re-establishment of skin homeostasis. Among others, it is involved in regulating keratinocyte differentiation.
View Article and Find Full Text PDFFerroptosis results from the accumulation of oxidized and damaged lipids which then leads to programmed cell death. This programmed process is iron-dependent, and as a fundamental biological process, plays a crucial role in tissue homeostasis. The ferroptosis molecular pathway depends on self-regulatory genes: GPX4; TFRC; ACSL4; FSP1; SLC7A11, and PROM2.
View Article and Find Full Text PDF70-kDa Heat Shock Proteins (HSPA/HSP70) are chaperones playing a central role in the proteostasis control mechanisms. Their basal expression can be highly elevated as an adaptive response to environmental and pathophysiological stress conditions. HSPA2, one of poorly characterised chaperones of the HSPA/HSP70 family, has recently emerged as epithelial cells differentiation-related factor.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
July 2023
In vitro cytotoxicity evaluation of linear copolymer (LC) containing choline ionic liquid units and its conjugates with an antibacterial drug in anionic form, that is, p-aminosalicylate (LC_PAS), clavulanate (LC_CLV), or piperacillin (LC_PIP) was carried out. These systems were tested against normal: human bronchial epithelial cells (BEAS-2B), and cancers: adenocarcinoma human alveolar basal epithelial cells (A549), and human non-small cell lung carcinoma cell line (H1299). Cells viability, after linear copolymer LC and their conjugates addition for 72 h, was measured at concentration range of 3.
View Article and Find Full Text PDFVascular regeneration is a complex process, additionally limited by the low regeneration potential of blood vessels. Hence, current research is focused on the design of artificial materials that combine biocompatibility with a certain rate of biodegradability and mechanical robustness. In this paper, we have introduced a scaffold material made of poly(L-lactide--glycolide)/poly(isosorbide sebacate) (PLGA/PISEB) fibers fabricated in the course of an electrospinning process, and confirmed its biocompatibility towards human umbilical vein endothelial cells (HUVEC).
View Article and Find Full Text PDFPurpose: Human carcinoma cells with different p53 status exposed to a combination of bioactive substances, resveratrol and berberine, revealed different responses in cell viability via p53-dependant apoptosis pathway activation.
Materials And Methods: Using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, we investigated various and opposing effects in hepatocellular carcinoma cells, Hep-G2 and Hep-3B with different p53-status.
Results: Cells decreased in viability after treatment with dose-dependent concentrations of resveratrol and berberine.