Publications by authors named "Malene E Lindholm"

Physical activity plays a fundamental role in human health and disease. Exercise has been shown to improve a wide variety of disease states, and the scientific community is committed to understanding the precise molecular mechanisms that underlie the exquisite benefits. This review provides an overview of molecular responses to acute exercise and chronic training, particularly energy mobilization and generation, structural adaptation, inflammation, and immune regulation.

View Article and Find Full Text PDF

Background: Physical activity is well known for its multiple health benefits and although the knowledge of the underlying molecular mechanisms is increasing, our understanding of the role of epigenetics in long-term training adaptation remains incomplete. In this intervention study, we included individuals with a history of > 15 years of regular endurance or resistance training compared to age-matched untrained controls performing endurance or resistance exercise. We examined skeletal muscle DNA methylation of genes involved in key adaptation processes, including myogenesis, gene regulation, angiogenesis and metabolism.

View Article and Find Full Text PDF

Mitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks.

View Article and Find Full Text PDF

Regular exercise has many physical and brain health benefits, yet the molecular mechanisms mediating exercise effects across tissues remain poorly understood. Here we analyzed 400 high-quality DNA methylation, ATAC-seq, and RNA-seq datasets from eight tissues from control and endurance exercise-trained (EET) rats. Integration of baseline datasets mapped the gene location dependence of epigenetic control features and identified differing regulatory landscapes in each tissue.

View Article and Find Full Text PDF

Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training (ExT) and sex on its molecular landscape is not fully established. Utilizing an integrative multi-omics approach, and leveraging data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we show profound sexual dimorphism in the scWAT of sedentary rats and in the dynamic response of this tissue to ExT. Specifically, the scWAT of sedentary females displays -omic signatures related to insulin signaling and adipogenesis, whereas the scWAT of sedentary males is enriched in terms related to aerobic metabolism.

View Article and Find Full Text PDF

Physical activity, including structured exercise, is associated with favorable health-related chronic disease outcomes. Although there is evidence of various molecular pathways that affect these responses, a comprehensive molecular map of these molecular responses to exercise has not been developed. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) is a multicenter study designed to isolate the effects of structured exercise training on the molecular mechanisms underlying the health benefits of exercise and physical activity.

View Article and Find Full Text PDF

Exercise training has tremendous systemic tissue-specific health benefits, but the molecular adaptations to long-term exercise training are not completely understood. We investigated the skeletal muscle proteome of highly endurance-trained, strength-trained, and untrained individuals and performed exercise- and sex-specific analyses. Of the 6,000+ proteins identified, >650 were differentially expressed in endurance-trained individuals compared with controls.

View Article and Find Full Text PDF

High-intensity interval training (HIIT) and hyperbaric oxygen therapy (HBOT) induce reactive oxygen species (ROS) formation and have immunomodulatory effects. The lack of readily available biomarkers for assessing the dose-response relationship is a challenge in the clinical use of HBOT, motivating this feasibility study to evaluate the methods and variability. The overall hypothesis was that a short session of hyperbaric oxygen (HBO) would have measurable effects on immune cells in the same physiological range as shown in HIIT; and that the individual response to these interventions can be monitored in venous blood and/or peripheral blood mononuclear cells (PBMCs).

View Article and Find Full Text PDF

Exercise training prevents age-related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late-life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown.

View Article and Find Full Text PDF

Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training and sex on its molecular landscape has not been fully established. Utilizing an integrative multi-omics approach with data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we identified profound sexual dimorphism in the dynamic response of rat scWAT to endurance exercise training. Despite similar cardiorespiratory improvements, only male rats reduced whole-body adiposity, scWAT adipocyte size, and total scWAT triglyceride abundance with training.

View Article and Find Full Text PDF

Mitochondria are adaptable organelles with diverse cellular functions critical to whole-body metabolic homeostasis. While chronic endurance exercise training is known to alter mitochondrial activity, these adaptations have not yet been systematically characterized. Here, the Molecular Transducers of Physical Activity Consortium (MoTrPAC) mapped the longitudinal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats endurance trained for 1, 2, 4 or 8 weeks.

View Article and Find Full Text PDF

Transcription factors (TFs) play a key role in regulating gene expression and responses to stimuli. We conducted an integrated analysis of chromatin accessibility, DNA methylation, and RNA expression across eight rat tissues following endurance exercise training (EET) to map epigenomic changes to transcriptional changes and determine key TFs involved. We uncovered tissue-specific changes and TF motif enrichment across all omic layers, differentially accessible regions (DARs), differentially methylated regions (DMRs), and differentially expressed genes (DEGs).

View Article and Find Full Text PDF

Background: ACTN2 (alpha-actinin 2) anchors actin within cardiac sarcomeres. The mechanisms linking mutations to myocardial disease phenotypes are unknown. Here, we characterize patients with novel mutations to reveal insights into the physiological function of ACTN2.

View Article and Find Full Text PDF

Exercise training prevents multiple diseases, yet the molecular mechanisms that drive exercise adaptation are incompletely understood. To address this, we create a computational framework comprising data from skeletal muscle or blood from 43 studies, including 739 individuals before and after exercise or training. Using linear mixed effects meta-regression, we detect specific time patterns and regulatory modulators of the exercise response.

View Article and Find Full Text PDF

Exercise provides a robust physiological stimulus that evokes cross-talk among multiple tissues that when repeated regularly (i.e., training) improves physiological capacity, benefits numerous organ systems, and decreases the risk for premature mortality.

View Article and Find Full Text PDF

To better understand the health benefits of lifelong exercise in humans, we conduct global skeletal muscle transcriptomic analyses of long-term endurance- (9 men, 9 women) and strength-trained (7 men) humans compared with age-matched untrained controls (7 men, 8 women). Transcriptomic analysis, Gene Ontology, and genome-scale metabolic modeling demonstrate changes in pathways related to the prevention of metabolic diseases, particularly with endurance training. Our data also show prominent sex differences between controls and that these differences are reduced with endurance training.

View Article and Find Full Text PDF

Introduction: Human skeletal muscle is thought to have heightened sensitivity to exercise stimulus when it has been previously trained (i.e., it possesses "muscle memory").

View Article and Find Full Text PDF

Background: Ageing is associated with DNA methylation changes in all human tissues, and epigenetic markers can estimate chronological age based on DNA methylation patterns across tissues. However, the construction of the original pan-tissue epigenetic clock did not include skeletal muscle samples and hence exhibited a strong deviation between DNA methylation and chronological age in this tissue.

Methods: To address this, we developed a more accurate, muscle-specific epigenetic clock based on the genome-wide DNA methylation data of 682 skeletal muscle samples from 12 independent datasets (18-89 years old, 22% women, 99% Caucasian), all generated with Illumina HumanMethylation (HM) arrays (HM27, HM450, or HMEPIC).

View Article and Find Full Text PDF

Background: Although the divergent male and female differentiation depends on key genes, many biological differences seen in men and women are driven by relative differences in estrogen and testosterone levels. Gender dysphoria denotes the distress that gender incongruence with the assigned sex at birth may cause. Gender-affirming treatment includes medical intervention such as inhibition of endogenous sex hormones and subsequent replacement with cross-sex hormones.

View Article and Find Full Text PDF

Protein-truncating variants can have profound effects on gene function and are critical for clinical genome interpretation and generating therapeutic hypotheses, but their relevance to medical phenotypes has not been systematically assessed. Here, we characterize the effect of 18,228 protein-truncating variants across 135 phenotypes from the UK Biobank and find 27 associations between medical phenotypes and protein-truncating variants in genes outside the major histocompatibility complex. We perform phenome-wide analyses and directly measure the effect in homozygous carriers, commonly referred to as "human knockouts," across medical phenotypes for genes implicated as being protective against disease or associated with at least one phenotype in our study.

View Article and Find Full Text PDF

Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity.

View Article and Find Full Text PDF

Reduced oxygen levels in skeletal muscle during exercise are a consequence of increased oxygen consumption. The cellular response to hypoxia is conferred to a large extent by activation of the hypoxia-sensitive transcription factor hypoxia-inducible factor-1 (HIF-1). The target genes of HIF-1 increase oxygen transport through mechanisms such as erythropoietin-mediated erythropoiesis and vascular endothelial growth factor-induced angiogenesis and improve tissue function during low oxygen availability through increased expression of glucose transporters and glycolytic enzymes, which makes HIF-1 an interesting candidate as a mediator of skeletal muscle adaptation to endurance training.

View Article and Find Full Text PDF

Regular endurance exercise training induces beneficial functional and health effects in human skeletal muscle. The putative contribution to the training response of the epigenome as a mediator between genes and environment has not been clarified. Here we investigated the contribution of DNA methylation and associated transcriptomic changes in a well-controlled human intervention study.

View Article and Find Full Text PDF

Human skeletal muscle health is important for quality of life and several chronic diseases, including type II diabetes, heart disease, and cancer. Skeletal muscle is a tissue widely used to study mechanisms behind different diseases and adaptive effects of controlled interventions. For such mechanistic studies, knowledge about the gene expression profiles in different states is essential.

View Article and Find Full Text PDF
Article Synopsis
  • - Identifying differentially methylated CpGs is essential in epigenetic research, but analyzing data from the Illumina HumanMethylation450 BeadChip is complicated due to biological and technical variability, as well as signal bias from different probe designs.
  • - The study compares various bioinformatics pipelines to address challenges like technical variability and probe bias by using two unpublished data sets with technical replicates, focusing on DNA methylation in blood and muscle samples.
  • - Results show that correcting for probe design is crucial, quantile normalization and BMIQ are effective normalization methods, and correcting for batch effects improves data reliability, leading to an efficient analysis pipeline for detecting differentially methylated CpGs.
View Article and Find Full Text PDF