Publications by authors named "Malenahalli H Naveen"

Copper nanoclusters (Cu NCs) characterized by their well-defined electronic and optical properties are an ideal platform for organic photocatalysis and exploring atomic-level behaviors. However, their potential as greener, efficient catalysts for challenging reactions like decarboxylative oxygenation under mild conditions remains unexplored. Herein, we present Cu(Nap)(PPh)H (hereafter CuNap), protected by 1-naphthalene thiolate (Nap), which performs well in decarboxylative oxidation (90% yield) under photochemical conditions.

View Article and Find Full Text PDF

Atomically precise metal nanoclusters (NCs) have become an important class of catalysts due to their catalytic activity, high surface area, and tailored active sites. However, the design and development of bond-forming reaction catalysts based on copper NCs are still in their early stages. Herein, we report the synthesis of an atomically precise copper nanocluster with a planar core and unique shell, [Cu(TBBT)(TPP)(CHN)H] () (TBBT: 4--butylbenzenethiol; TPP: triphenylphosphine), in high yield via a one-pot reduction method.

View Article and Find Full Text PDF

Despite the enormous attention paid to cobalt oxide materials as efficient water splitting electrocatalysts, a deep understanding of their activity discrepancy is still elusive. In this work, we showed that stabilization of the internally generated oxygen evolution reaction (OER) active phase (oxyhydroxide) is crucial for ZnCoO electrocatalysts. A systematic evaluation of the bulk and nanostructured ZnCoO system concomitant with nanostructured CoO showed that leaching of Zn is the driving force behind the near-surface transformation to the oxyhydroxide phase.

View Article and Find Full Text PDF

Despite the successful debut of gold nanoclusters (Au NCs) in solar cell applications, Au NCs, compared to dyes and quantum dots, have several drawbacks, such as lower extinction coefficients. Any modulation of the physical properties of NCs can have a significant influence on the delicate control of absorbance, energy levels, and charge separation, which are essential to ensure high power conversion efficiency. To this end, we systematically alter the optoelectronic structure of Au(SR) by Ag doping and explain its influence on solar cell performance.

View Article and Find Full Text PDF

Sensitive and selective detection of nitric oxide (NO) in the human body is crucial since it has the vital roles in the physiological and pathological processes. This study reports a new type of electrochemical NO biosensor based on zinc-dithiooxamide framework derived porous ZnO nanoparticles and polyterthiophene-rGO composite. By taking advantage of the synergetic effect between ZnO and poly(TTBA-rGO) (TTBA = 3'-(p-benzoic acid)-2,2':5',2″-terthiophene, rGO = reduced graphene oxide) nanocomposite layer, the poly(TTBA-rGO)/ZnO sensor probe displays excellent electrocatalytic activity and explores to detect NO released from normal and cancer cell lines.

View Article and Find Full Text PDF